平衡二叉树
AVL树是严格的平衡二叉树,平衡条件必须满足(所有结点的左右子树高度差不超过1)。不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保存平衡,而因为旋转非常耗时,由此我们可以知道AVL树适合用于插入与删除次数比较少,但查找多的情况
红黑树
保证五个条件
(1)结点非红即黑
(2)根结点是黑色的
(3)每个叶子节点(NULL节点)是黑色的
(4)每个红色节点的两个子节点都是黑色的。(不能有两连续的红色节点)
(5)从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
注意:性质(5)保证红黑树的最长路径不超过最短路径的两倍。
红黑树是一中弱平衡二叉树(由于是弱平衡,可以看到,在相同的节点情况下,AVL树的高度低于红黑树,相对于要求严格的AVL树来说,它的旋转次数少,插入最多两次旋转,删除最多三次旋转,所以对于搜索,插入,删除操作较多的情况下,我们就用红黑树
总结
平衡二叉树插入和删除需要旋转来保证左右子树的平衡<=1,所以插入和删除性能比较差,由于二叉平衡树高度比较矮,所以查找性能更加好
红黑树要求到达叶子节点最长路径<=最短路径×2,所以红黑树高度比较高,查找性能没有平衡二叉树好,但是由于对左右子树没有强要求<=1,所以旋转次数减少,也就是说红黑树插入和删除性能较好