uvalive4043 二分图

题目大意:给你n个白点和n个黑点的平面坐标,要求用n条不相交的线连起来,每条线段连一个白点和黑点,每个点连一条线,所有的连线都不橡胶,也就是匹配。让你输出第i个白点所对应的黑点。

解题思路:二分图完美匹配问题。但是题目中有个线段不相交,怎么办?其实这个最佳完美匹配就是答案了。最佳完美匹配是权值和最大,那么我们就把两两点线段的权值搞成他们距离的负数即可。这样就不可能有相交的了。为什么?因为假设有相交,a1-b2,a2-b1,而dist(a1,b1)+dist(a2,b2) 肯定比前面交叉的小,可利用三角形三边关系证明,那么负数就是大了,也就是说交叉的在我们设计的负权那里是小的,所以就是最佳,也就是不可能有交叉的。保证最小的权值,所连的边一定是可以不相交的.
这样分析清楚了之后,就只要直接套用KM就OK了!

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#define N 110
using namespace std;
typedef long long ll;
const double inf=1e40;
const double eps=1e-6;
double s[N][N],slack[N];   //s[i][j]存相应的 集合A点i到集合B点j的距离
double lx[N],ly[N];
int mat[N],n;      //用来保存 每个点相应的 最佳匹配的匹配点
bool vx[N],vy[N];
bool dfs(int u)
{
    vx[u]=1;
    for(int i=1; i<=n; i++)
    {
        if(!vy[i])
        {
            double t=lx[u]+ly[i]-s[u][i];
            if(fabs(t)<eps)
            {
                vy[i]=1;
                if(mat[i]==-1||dfs(mat[i]))
                {
                    mat[i]=u;
                    return 1;
                }
            }
            else slack[i]=min(slack[i],t);
        }
    }
    return 0;
}
void KM()
{
    memset(mat,-1,sizeof(mat));
    memset(ly,0,sizeof(ly));
    for(int i=1; i<=n; i++)
    {
        lx[i]=-inf;
        for(int j=1; j<=n; j++)
            lx[i]=max(lx[i],s[i][j]);     //负数取max 等价于 正数取min  lx[i]用于存放 从集合A中的i点 到集合B 的最长路径
    }
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=n; j++)slack[j]=inf;
        while(1)
        {
            memset(vx,0,sizeof(vx));
            memset(vy,0,sizeof(vy));
            if(dfs(i))break;
            double d=inf;
            for(int j=1; j<=n; j++)
                if(!vy[j])d=min(d,slack[j]);
            for(int j=1; j<=n; j++)
                if(vx[j])lx[j]-=d;
            for(int j=1; j<=n; j++)
                if(vy[j])ly[j]+=d;
        }
    }
    for(int i=1; i<=n; i++)
        printf("%d\n",mat[i]);
}
double bx[N],by[N],wx[N],wy[N];  // 存相应的点的位置
double dis(int i,int j)          //计算 点之间的距离
{
    return sqrt((wx[i]-bx[j])*(wx[i]-bx[j])+(wy[i]-by[j])*(wy[i]-by[j]));
}
int main()
{
    int flag=0;
    while(cin>>n)
    {
        for(int i=1; i<=n; i++)cin>>bx[i]>>by[i];
        for(int i=1; i<=n; i++)cin>>wx[i]>>wy[i];
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
            {
                s[i][j]=-dis(i,j);      //因为是求 权值和最大的完美匹配 因此在进行权值计算的时候 对每个权值取负 只这样计算出来的最大值 对应的就是正值的最小值
                //printf("%d %d %f\n",i,j,s[i][j]);
            }
            //printf("\n");
        }
        if(flag)printf("\n");
        KM();
        flag=1;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值