- 博客(6)
- 收藏
- 关注
原创 南瓜书第四章 决策树
顾名思义,决策树是基于树结构来进行决策的。一般的,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点。例如,我们要对“这是好瓜吗?”这样的问题进行决策时,通常会进行一系列的判断或“子决策”:我们先看“它是什么颜色?”,如果是“青绿色”,则我们再看“它的根蒂是什么形态?”,如果是“蜷缩”,我们再判断“它敲起来是什么声音?
2024-01-30 00:24:49 497 1
原创 南瓜书第三章(2) 对数几率回归
以概率论、随机过程为基本研究工具,研究广义通信系统的整个过程。常见的应用有无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)等。(1)信息论(一门现代化学科)
2024-01-23 18:00:00 383
原创 南瓜书第二章 模型评估与选择
留出法”(hold-out)直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集T,即D=SUT,S与T互斥,在S上训练出模型后,用T来评估其测试误差,作为对泛化误差的估计。以自助采样为基础,每次随机从数据集D中选出一个,拷贝到放到数据集D‘中,注意,每次都要把抽取的数据再放回原来的数据集中,使之,能够再次被找到,当我们重复m次时,就得到了一个含有m个数据的数据集D’。训练/测试集的划分要尽可能保持数据分布的一致性,避免因数据划分过程引入额外的偏差而对最终结果产生影响。
2024-01-17 21:46:25 830
原创 南瓜书第一章 绪论
(3)归纳偏好:在"房价预测”的例子中,当选用一元线性回归算法时,学得的模型是一元一次函数,当选用多项式回归算法时,学得的模型是一元二次函数数,所以不同的机器学习算法有不同的偏好,我们称为"归纳偏好”。当分类的类别只有两个时,称此类任务为“二分类”,通常称其中一个为“正类”,另 一个为“反类”或“负类”。:机器学习的本质就是在学习样本在某个方面的表现是否存在潜在的规律,我们称该方 面的信息为“标记”。标记所在的空间称为“标记空间”或“输出空间”,数学表示为花式大写的。也称为“输入空间”或“属性空间”。
2024-01-16 21:52:31 428
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人