JZ30 连续子数组的最大和

本文深入探讨动态规划的概念,并通过解决一个经典问题——寻找一个整数数组中最大子数组和,来阐述动态规划的应用。提供的Python代码实现了一个O(n)时间复杂度的解决方案,通过状态转移方程dp[i]=max(array[i], dp[i-1]+array[i])确定最佳子数组。
摘要由CSDN通过智能技术生成

描述

输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为 O(n).

动态规划算重点之一,重新理解一下动态规划。

 这段文字真的很好的解释了什么是动态规划!!来源于https://blog.csdn.net/zw6161080123/article/details/80639932博客。

再来看看讨论组的精华题解:

# -*- coding:utf-8 -*-
class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        n = len(array)
        dp = [ i for i in array]
        for i in range(1,n):
            dp[i] = max(dp[i-1]+array[i],array[i])
        return max(dp)

状态转移方程:dp[i] = max(array[i], dp[i-1]+array[i])
解释:如果当前元素为整数,并且dp[i-1]为负数,那么当然结果就是只选当前元素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值