算法----贪心

目录

算法----贪心

分发饼干

摆动序列(376)

最大子序和

买卖股票的最佳时机||(122)

跳跃游戏(55)

跳跃游戏||

K次取反后最大化的数组和(1005)

加油站(134)

分发糖果(135)

柠檬水找零(860)

根据身高体重建队列(406)

用最少数量的箭引爆气球

无重叠区间(435)

划分字母区间(763)

合并区间(56)

单调递增的数字(738)

买卖股票的最佳时机含手续费(714)

监控二叉树(968)


算法----贪心

在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,算法得到的是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择

分发饼干

class Solution {
    // 思路1:优先考虑饼干,小饼干先喂饱小胃口
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = 0;
        int count = 0;
        for (int i = 0; i < s.length && start < g.length; i++) {
            if (s[i] >= g[start]) {
                start++;
                count++;
            }
        }
        return count;
    }
}
​
​
class Solution {
    // 思路2:优先考虑胃口,先喂饱大胃口
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int count = 0;
        int start = s.length - 1;
        // 遍历胃口
        for (int index = g.length - 1; index >= 0; index--) {
            if(start >= 0 && g[index] <= s[start]) {
                start--;
                count++;
            }
        }
        return count;
    }
}
​

摆动序列(376)

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

//贪心
class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            //得到当前差值
            curDiff = nums[i] - nums[i - 1];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}
​
​
// DP
class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];
​
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;
​
            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }
​
        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }
}
​

最大子序和

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums.length == 1){
            return nums[0];
        }
        int sum = Integer.MIN_VALUE;
        int count = 0;
        for (int i = 0; i < nums.length; i++){
            count += nums[i];
            sum = Math.max(sum, count); // 取区间累计的最大值(相当于不断确定最大子序终止位置)
            if (count <= 0){
                count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
            }
        }
       return sum;
    }
}
​
// DP 方法
class Solution {
    public int maxSubArray(int[] nums) {
        int ans = Integer.MIN_VALUE;
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        ans = dp[0];
​
        for (int i = 1; i < nums.length; i++){
            dp[i] = Math.max(dp[i-1] + nums[i], nums[i]);
            ans = Math.max(dp[i], ans);
        }
​
        return ans;
    }
}
​

买卖股票的最佳时机||(122)

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

// 贪心思路
class Solution {
    public int maxProfit(int[] prices) {
        int result = 0;
        for (int i = 1; i < prices.length; i++) {
            result += Math.max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
}
​
// 动态规划
class Solution { 
    public int maxProfit(int[] prices) {
        // [天数][是否持有股票]
        int[][] dp = new int[prices.length][2];
​
        // base case
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
​
        for (int i = 1; i < prices.length; i++) {
            // dp公式
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }
​
        return dp[prices.length - 1][0];
    }
}
​

跳跃游戏(55)

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

class Solution {
    public boolean canJump(int[] nums) {
        if (nums.length == 1) {
            return true;
        }
        //覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
        int coverRange = 0;
        //在覆盖范围内更新最大的覆盖范围
        for (int i = 0; i <= coverRange; i++) {
            coverRange = Math.max(coverRange, i + nums[i]);
            if (coverRange >= nums.length - 1) {
                return true;
            }
        }
        return false;
    }
}
​

跳跃游戏||

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

// 版本一
class Solution {
    public int jump(int[] nums) {
        if (nums == null || nums.length == 0 || nums.length == 1) {
            return 0;
        }
        //记录跳跃的次数
        int count=0;
        //当前的覆盖最大区域
        int curDistance = 0;
        //最大的覆盖区域
        int maxDistance = 0;
        for (int i = 0; i < nums.length; i++) {
            //在可覆盖区域内更新最大的覆盖区域
            maxDistance = Math.max(maxDistance,i+nums[i]);
            //说明当前一步,再跳一步就到达了末尾
            if (maxDistance>=nums.length-1){
                count++;
                break;
            }
            //走到当前覆盖的最大区域时,更新下一步可达的最大区域
            if (i==curDistance){
                curDistance = maxDistance;
                count++;
            }
        }
        return count;
    }
}
​
// 版本二
class Solution {
    public int jump(int[] nums) {
        int result = 0;
        // 当前覆盖的最远距离下标
        int end = 0;
        // 下一步覆盖的最远距离下标
        int temp = 0;
        for (int i = 0; i <= end && end < nums.length - 1; ++i) {
            temp = Math.max(temp, i + nums[i]);
            // 可达位置的改变次数就是跳跃次数
            if (i == end) {
                end = temp;
                result++;
            }
        }
        return result;
    }
}
​

K次取反后最大化的数组和(1005)

给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)

以这种方式修改数组后,返回数组可能的最大和。

class Solution {
    public int largestSumAfterKNegations(int[] nums, int K) {
        // 将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
    nums = IntStream.of(nums)
             .boxed()
             .sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1))
             .mapToInt(Integer::intValue).toArray();
    int len = nums.length;      
    for (int i = 0; i < len; i++) {
        //从前向后遍历,遇到负数将其变为正数,同时K--
        if (nums[i] < 0 && K > 0) {
            nums[i] = -nums[i];
            K--;
        }
    }
    // 如果K还大于0,那么反复转变数值最小的元素,将K用完
​
    if (K % 2 == 1) nums[len - 1] = -nums[len - 1];
    return Arrays.stream(nums).sum();
​
    }
}
​
​
class Solution {
    public int largestSumAfterKNegations(int[] A, int K) {
        if (A.length == 1) return k % 2 == 0 ? A[0] : -A[0];
        Arrays.sort(A);
        int sum = 0;
        int idx = 0;
        for (int i = 0; i < K; i++) {
            if (i < A.length - 1 && A[idx] < 0) {
                A[idx] = -A[idx];
                if (A[idx] >= Math.abs(A[idx + 1])) idx++;
                continue;
            }
            A[idx] = -A[idx];
        }
​
        for (int i = 0; i < A.length; i++) {
            sum += A[i];
        }
        return sum;
    }
}
​

加油站(134)

在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。

你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。

如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。

// 解法1全局考虑
class Solution {
    public int canCompleteCircuit(int[] gas, int[] cost) {
        int sum = 0;
        int min = 0;
        for (int i = 0; i < gas.length; i++) {
            sum += (gas[i] - cost[i]);
            min = Math.min(sum, min);
        }
​
        if (sum < 0) return -1;
        if (min >= 0) return 0;
​
        for (int i = gas.length - 1; i > 0; i--) {
            min += (gas[i] - cost[i]);
            if (min >= 0) return i;
        }
​
        return -1;
    }
}
​
// 解法2
class Solution {
    public int canCompleteCircuit(int[] gas, int[] cost) {
        int curSum = 0;
        int totalSum = 0;
        int index = 0;
        for (int i = 0; i < gas.length; i++) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {
                index = (i + 1) % gas.length ; 
                curSum = 0;
            }
        }
        if (totalSum < 0) return -1;
        return index;
    }
}
​

分发糖果(135)

你需要按照以下要求,帮助老师给这些孩子分发糖果:

  • 每个孩子至少分配到 1 个糖果。

  • 相邻的孩子中,评分高的孩子必须获得更多的糖果。

那么这样下来,老师至少需要准备多少颗糖果呢?

class Solution {
    /**
         分两个阶段
         1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
         2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,此时 左边的糖果应该 取本身的糖果数(符合比它左边大) 和 右边糖果数 + 1 二者的最大值,这样才符合 它比它左边的大,也比它右边大
    */
    public int candy(int[] ratings) {
        int[] candyVec = new int[ratings.length];
        candyVec[0] = 1;
        for (int i = 1; i < ratings.length; i++) {
            if (ratings[i] > ratings[i - 1]) {
                candyVec[i] = candyVec[i - 1] + 1;
            } else {
                candyVec[i] = 1;
            }
        }

        for (int i = ratings.length - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1]) {
                candyVec[i] = Math.max(candyVec[i], candyVec[i + 1] + 1);
            }
        }

        int ans = 0;
        for (int s : candyVec) {
            ans += s;
        }
        return ans;
    }
}

柠檬水找零(860)

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。

顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。

注意,一开始你手头没有任何零钱。

如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

class Solution {
    public boolean lemonadeChange(int[] bills) {
        int five = 0;
        int ten = 0;

        for (int i = 0; i < bills.length; i++) {
            if (bills[i] == 5) {
                five++;
            } else if (bills[i] == 10) {
                five--;
                ten++;
            } else if (bills[i] == 20) {
                if (ten > 0) {
                    ten--;
                    five--;
                } else {
                    five -= 3;
                }
            }
            if (five < 0 || ten < 0) return false;
        }
        
        return true;
    }
}

根据身高体重建队列(406)

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

class Solution {
    public int[][] reconstructQueue(int[][] people) {
        // 身高从大到小排(身高相同k小的站前面)
        Arrays.sort(people, (a, b) -> {
            if (a[0] == b[0]) return a[1] - b[1];
            return b[0] - a[0];
        });

        LinkedList<int[]> que = new LinkedList<>();

        for (int[] p : people) {
            que.add(p[1],p);
        }

        return que.toArray(new int[people.length][]);
    }
}

用最少数量的箭引爆气球

在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。

一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。

class Solution {
    public int findMinArrowShots(int[][] points) {
        if (points.length == 0) return 0;
        Arrays.sort(points, (o1, o2) -> Integer.compare(o1[0], o2[0]));

        int count = 1;
        for (int i = 1; i < points.length; i++) {
            if (points[i][0] > points[i - 1][1]) {
                count++;
            } else {
                points[i][1] = Math.min(points[i][1],points[i - 1][1]);
            }
        }
        return count;
    }
}

无重叠区间(435)

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

class Solution {
    public int eraseOverlapIntervals(int[][] intervals) {
        Arrays.sort(intervals, (a, b) -> {
            // 按照区间右边界升序排序
            return a[1] - b[1];
        });

        int count = 0;
        int edge = Integer.MIN_VALUE;
        for (int i = 0; i < intervals.length; i++) {
            // 若上一个区间的右边界小于当前区间的左边界,说明无交集
            if (edge <= intervals[i][0]) {
                edge = intervals[i][1];
            } else {
                count++;
            }
        }

        return count;
    }
}


class Solution {
    public int eraseOverlapIntervals(int[][] intervals) {

        Arrays.sort(intervals,(a,b)->{
            return Integer.compare(a[0],b[0]);
        });
        int remove = 0;
        int pre = intervals[0][1];
        for(int i=1;i<intervals.length;i++){
            if(pre>intervals[i][0]) {
                remove++;
                pre = Math.min(pre,intervals[i][1]);
            }
            else pre = intervals[i][1];
        }
        return remove;
    }
}

划分字母区间(763)

字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。

class Solution {
    public List<Integer> partitionLabels(String S) {
        List<Integer> list = new LinkedList<>();
        int[] edge = new int[26];
        char[] chars = S.toCharArray();
        for (int i = 0; i < chars.length; i++) {
            edge[chars[i] - 'a'] = i;
        }
        int idx = 0;
        int last = -1;
        for (int i = 0; i < chars.length; i++) {
            idx = Math.max(idx,edge[chars[i] - 'a']);
            if (i == idx) {
                list.add(i - last);
                last = i;
            }
        }
        return list;
    }
}

class Solution{
    /*解法二*/
    
    public  int[][] findPartitions(String s) {
        List<Integer> temp = new ArrayList<>();
        int[][] hash = new int[26][2];//26个字母2列 表示该字母对应的区间

        for (int i = 0; i < s.length(); i++) {
            //更新字符c对应的位置i
            char c = s.charAt(i);
            if (hash[c - 'a'][0] == 0) hash[c - 'a'][0] = i;

            hash[c - 'a'][1] = i;

            //第一个元素区别对待一下
            hash[s.charAt(0) - 'a'][0] = 0;
        }


        List<List<Integer>> h = new LinkedList<>();
        //组装区间
        for (int i = 0; i < 26; i++) {
            //if (hash[i][0] != hash[i][1]) {
            temp.clear();
            temp.add(hash[i][0]);
            temp.add(hash[i][1]);
            //System.out.println(temp);
            h.add(new ArrayList<>(temp));
            // }
        }
        // System.out.println(h);
        // System.out.println(h.size());
        int[][] res = new int[h.size()][2];
        for (int i = 0; i < h.size(); i++) {
            List<Integer> list = h.get(i);
            res[i][0] =  list.get(0);
            res[i][1] =  list.get(1);
        }

        return res;

    }

    public  List<Integer> partitionLabels(String s) {
        int[][] partitions = findPartitions(s);
        List<Integer> res = new ArrayList<>();
        Arrays.sort(partitions, (o1, o2) -> Integer.compare(o1[0], o2[0]));
        int right = partitions[0][1];
        int left = 0;
        for (int i = 0; i < partitions.length; i++) {
            if (partitions[i][0] > right) {
                //左边界大于右边界即可纪委一次分割
                res.add(right - left + 1);
                left = partitions[i][0];
            }
            right = Math.max(right, partitions[i][1]);

        }
        //最右端
        res.add(right - left + 1);
        return res;

    }
}

合并区间(56)

给出一个区间的集合,请合并所有重叠的区间

class Solution {
    public int[][] merge(int[][] intervals) {
        List<int[]> res = new LinkedList<>();
        Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));

        int start = intervals[0][0];
        for (int i = 1; i < intervals.length; i++) {
            if (intervals[i][0] > intervals[i - 1][1]) {
                res.add(new int[]{start, intervals[i - 1][1]});
                start = intervals[i][0];
            } else {
                intervals[i][1] = Math.max(intervals[i][1], intervals[i - 1][1]);
            }
        }
        res.add(new int[]{start, intervals[intervals.length - 1][1]});
        return res.toArray(new int[res.size()][]);
    }
}

// 版本2
class Solution {
    public int[][] merge(int[][] intervals) {
        LinkedList<int[]> res = new LinkedList<>();
        Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));
        res.add(intervals[0]);
        for (int i = 1; i < intervals.length; i++) {
            if (intervals[i][0] <= res.getLast()[1]) {
                int start = res.getLast()[0];
                int end = Math.max(intervals[i][1], res.getLast()[1]);
                res.removeLast();
                res.add(new int[]{start, end});
            }
            else {
                res.add(intervals[i]);
            }         
        }
        return res.toArray(new int[res.size()][]);
    }
}

单调递增的数字(738)

给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。

class Solution {
    public int monotoneIncreasingDigits(int n) {
        String s = String.valueOf(n);
        char[] chars = s.toCharArray();
        int start = s.length();
        for (int i = s.length() - 2; i >= 0; i--) {
            if (chars[i] > chars[i + 1]) {
                chars[i]--;
                start = i+1;
            }
        }
        for (int i = start; i < s.length(); i++) {
            chars[i] = '9';
        }
        return Integer.parseInt(String.valueOf(chars));
    }
}

买卖股票的最佳时机含手续费(714)

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

// 贪心思路
class Solution {
    public int maxProfit(int[] prices, int fee) {
        int buy = prices[0] + fee;
        int sum = 0;
        for (int p : prices) {
            if (p + fee < buy) {
                buy = p + fee;
            } else if (p > buy){
                sum += p - buy;
                buy = p;
            }
        }
        return sum;
    }
}

class Solution { // 动态规划
    public int maxProfit(int[] prices, int fee) {
        if (prices == null || prices.length < 2) {
            return 0;
        }

        int[][] dp = new int[prices.length][2];

        // bad case
        dp[0][0] = 0;
        dp[0][1] = -prices[0];

        for (int i = 1; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }

        return dp[prices.length - 1][0];
    }
}

监控二叉树(968)

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

class Solution {
    int  res=0;
    public int minCameraCover(TreeNode root) {
        // 对根节点的状态做检验,防止根节点是无覆盖状态 .
        if(minCame(root)==0){
            res++;
        }
        return res;
    }
    /**
     节点的状态值:
       0 表示无覆盖 
       1 表示 有摄像头
       2 表示有覆盖 
    后序遍历,根据左右节点的情况,来判读 自己的状态
     */
    public int minCame(TreeNode root){
        if(root==null){
            // 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头 
            return 2;
        }
        int left=minCame(root.left);
        int  right=minCame(root.right);
        
        // 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
        if(left==2&&right==2){
            //(2,2) 
            return 0;
        }else if(left==0||right==0){
            // 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
            // (0,0) (0,1) (0,2) (1,0) (2,0) 
            // 状态值为 1 摄像头数 ++;
            res++;
            return 1;
        }else{
            // 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
            // 那么本节点就是处于被覆盖状态 
            return 2;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值