- 博客(10)
- 资源 (1)
- 收藏
- 关注
原创 Content type ‘application/xml‘ not supported;Could not find acceptable representation
环境配置踩坑
2022-05-29 23:41:05 1479
原创 IntelliJ IDEA 2018安装,idea配置tomcat,idea导入maven,tomcat启动乱码,mysql服务启动
java学习,环境配置记录
2022-05-28 16:34:16 779
原创 Inception v3:Rethinking the Inception Architecture for Computer Vision翻译理解
参考博客https://blog.csdn.net/Quincuntial/article/details/78564389Abstract只要有足够的标签数据,增加模型尺寸和计算时间对大多数任务有用。Here we are exploring ways toscale up networks in ways,目的式通过适当的分解卷积核积极的正则化来尽可能地有效利用增加地计算。Intr...
2019-04-15 20:55:03 2092
原创 Facenet:一个统一的嵌入特征用于人脸识别和聚类
3.MethodDeep架构一个黑盒:ZF和inception。学习一个端到端的网络,在末端,我们使用三元组损失直接映射到我们想要的人脸确认、识别、聚类。我们要完成一个嵌入函数f(x),计算一张图片x到一个特征空间。在这个空间,所有人脸的平方距离,相同身份距离小,不同身份距离大。三元组损失,尝试增加一个margin对不同身份的人脸,允许一个身份的人脸处于一个量级,增加不同身份之间的距离...
2019-04-05 21:16:27 697
原创 Faster R-CNN:使用区域建议网络进行实时目标检测
1、Introduction一个RPN是一个全卷积网络同时预测每个位置的对象分数和对象边界。On top of these conv features(除了这些卷积特征),我们建立一个RPNs通过增加两个额外的卷积层,一个是编码每个卷积图的位置转换成一个短的特征向量(例如256维),另一个在每一个卷积图的位置,输出一个目标分数和回归k个(k=9)区域建议框参数化坐标(坐标偏移量)和不同的尺度和...
2019-04-05 17:14:27 2334
原创 OverFeat,分类、定位、检测
1、视觉任务分类任务,每张图片安排一个标签联系图片上的主要物体;定位任务,一个边界框预测对象返回一个类比,必须和GT 的IoU>0.5;检测任务 每个图像中可以有任意数量的对象,FP通过mAp惩罚。3.3多尺度分类测试每个location多个尺度通过一个全卷积网络,每个尺度输出一个C-dimensional向量。输入图片6个尺度再加上水平翻转输入网络,unpool层增广,池化...
2019-04-04 22:08:51 434
原创 贝叶斯公式
联合概率:全概率公式:贝叶斯公式:建立在条件概率的基础上寻找时间发生的原因(即大事件A已经发生的条件下,分割中的小事件的概率)第二种理解:其中p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性...
2018-11-12 11:23:47 871
原创 双系统找不到Ubuntu引导项只进入Windows系统,Windows10下挂载启动盘,找回grub引导
右键开始菜单 Windows PowerShell管理员输入以下命令1,diskpart //查看磁盘2,list disk3,select disk 04,list partition5,select partition 1 //选择uefi启动盘6,assign //分配盘符然后是以下博客步骤https://linux.cn/article-466...
2018-07-11 20:40:14 1778
原创 windows下配置yolov3(GPU),Vs2015+opencv3.1.0+cuda8.0+cudnnV5.1
学习上的坑一个个踩过来,始终相信我能做到。1、VS编译器中Debug|x64和Release|x64属性管理器(视图->其他窗口)Microsoft.Cpp.Win64.user为同一个2、配置opencv花了很多时间,opencv2和3都能在win32下编译通过,在x64平台下opencv3测试一个显示图片demo报错OpencvError:Assertion failed(size.Wi...
2018-06-07 09:02:46 1365
原创 第一次笔试总结
sigmoid函数的优点在于,它的输出映射在(0,1)内,单调连续,非常适合用做输出层,并且求导比较容易。但是一旦输入落入饱和区,容易产生梯度消失。梯度小时是指在更新模型参数时采用链式求导法则反向求导,越往前梯度越小。最终的结果时到达一定深度后梯度对模型的更新就没有任何贡献了。输出以0为中心,收敛速度比sigmoid要快,无法解决梯度消失f(x)=max(x,0) relu在x<0时...
2018-05-15 22:52:27 315
最新GAN生成高清图片
2017-12-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人