联合概率:
全概率公式:
贝叶斯公式:建立在条件概率的基础上寻找时间发生的原因(即大事件A已经发生的条件下,分割中的小事件的概率)
第二种理解:其中p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下
我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?
从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。
设:
由已知可得:
男性和女性穿凉鞋相互独立,所以
部分参考:https://blog.csdn.net/zengxiantao1994/article/details/72787849