bzoj1475: 方格取数(最小割)

33 篇文章 0 订阅

题目传送门
水。。

解法:
没有公共边也就是格子不相邻。
那么把整个图黑白染色。
相邻的颜色不一样。
那么就最小割呗。
把所有点个成两个集合。一个黑色点的集合,一个白色点的集合。
黑色点都没有公共边白色点也没有公共点。
好水的最小割做完前面的题发现这道才是最水的。

代码实现:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
struct node {int x,y,c,next,other;}a[21000];int len,last[1100];
void ins(int x,int y,int c) {
    int k1,k2;
    len++;k1=len;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;
    len++;k2=len;a[len].x=y;a[len].y=x;a[len].c=0;a[len].next=last[y];last[y]=len;
    a[k1].other=k2;a[k2].other=k1;
}
int list[1100],head,tail,st,ed,h[1100];
bool bt_h() {
    head=1;tail=2;list[1]=st;memset(h,0,sizeof(h));h[st]=1;
    while(head!=tail) {
        int x=list[head];
        for(int k=last[x];k;k=a[k].next) {
            int y=a[k].y;
            if(h[y]==0&&a[k].c>0) {h[y]=h[x]+1;list[tail++]=y;}
        }head++;
    }if(h[ed]==0)return false;return true;
}
int findflow(int x,int f) {
    if(x==ed)return f;
    int s=0,t;
    for(int k=last[x];k;k=a[k].next) {
        int y=a[k].y;
        if(h[y]==h[x]+1&&a[k].c>0&&s<f) {t=findflow(y,min(a[k].c,f-s));s+=t;a[k].c-=t;a[a[k].other].c+=t;}
    }if(s==0)h[x]=0;return s;
}
int n,d[51][51],dx[5]={0,1,0,-1},dy[5]={1,0,-1,0};
bool pd(int x,int y) {if(x<1||y<1||x>n||y>n)return false;return true;}
int pt(int x,int y) {return (x-1)*n+y;}const int inf=999999999;
int main() {
    scanf("%d",&n);memset(d,0,sizeof(d));d[1][1]=1;
    for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)
        for(int k=0;k<=3;k++)if(pd(i+dx[k],j+dy[k])==true)d[i+dx[k]][j+dy[k]]=1-d[i][j];
    int sum=0;st=n*n+1;ed=st+1;len=0;memset(last,0,sizeof(last));
    for(int i=1;i<=n;i++)for(int j=1;j<=n;j++) {
        int x;scanf("%d",&x);sum+=x;
        if(d[i][j]==1) {ins(st,pt(i,j),x);
            for(int k=0;k<=3;k++)if(pd(i+dx[k],j+dy[k])==true)ins(pt(i,j),pt(i+dx[k],j+dy[k]),inf);
        }else ins(pt(i,j),ed,x);
    }int ans=0;while(bt_h()==true)ans+=findflow(st,inf);printf("%d\n",sum-ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值