题目传送门
。
解法:
很神啊。
首先将图黑白染色。相邻点不同颜色。
那么每一次操作黑色点和白色点同时都要+1
c1表示白色点数量。s1表示白色点总和。
c2,s2表示黑色。
因为每次操作黑白加的是一样的。
设最后都变成x。
那么有c1*x-s1=c2*x-s2
化简得x=(s1-s2)/(c1-c2)
分情况讨论:
如果c1=c2。
那么s1!=s2的时候无解。
当s1等于s2的时候有解。
那么这个解肯定满足二分性啊因为黑白点数相同。
那么我们二分答案用网络流判断一下就行。
如果c1!=c2
那么我们可以直接求出x。
然后用网络流判断一下即可。
网络流建图蛮简单的:
首先每个点要补到x。
那么他需要x-a[i][j]。
所以st向白点连边容量为x-权值
黑点向ed连边容量为x-权值
中间的点能到达就连边容量为无限。
只需判断是否满流即可。
代码实现:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
struct node {int x,y,next,other;ll c;}a[110000];int len,last[2100];
void ins(int x,int y,ll c) {
int k1,k2;
len++;k1=len;a[len].x=x;a[len].y=y;a[len].c=c;a[len].next=last[x];last[x]=len;
len++;k2=len;a[len].x=y;a[len].y=x;a[len].c=0;a[len].next=last[y];last[y]=len;
a[k1].other=k2;a[k2].other=k1;
}
int head,tail,list[2100],st,ed,h[2100];
bool bt_h() {
head=1;tail=2;list[1]=st;memset(h,0,sizeof(h));h[st]=1;
while(head!=tail) {
int x=list[head];
for(int k=last[x];k;k=a[k].next) {
int y=a[k].y;
if(h[y]==0&&a[k].c>0) {h[y]=h[x]+1;list[tail++]=y;}
}head++;
}if(h[ed]==0)return false;return true;
}
ll find_flow(int x,ll f) {
if(x==ed)return f;
ll s=0,t;
for(int k=last[x];k;k=a[k].next) {
int y=a[k].y;
if(h[y]==h[x]+1&&a[k].c>0&&s<f) {
t=find_flow(y,min(a[k].c,f-s));s+=t;a[k].c-=t;a[a[k].other].c+=t;
}
}if(s==0)h[x]=0;return s;
}
int dx[5]={0,1,0,-1},dy[5]={1,0,-1,0},n,m,map[51][51];ll s[51][51];
int pt(int x,int y) {return (x-1)*m+y;}const ll inf=999999999999999999;
int pd(int x,int y) {if(x<1||x>n||y<1||y>m)return false;return true;}
bool check(ll x) {
len=0;memset(last,0,sizeof(last));ll tot=0ll;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if(map[i][j]==0) {
ins(st,pt(i,j),x-s[i][j]);tot+=x-s[i][j];
for(int k=0;k<=3;k++) {
int tx=i+dx[k],ty=j+dy[k];if(pd(tx,ty)==false)continue;
ins(pt(i,j),pt(tx,ty),inf);
}
}
else ins(pt(i,j),ed,x-s[i][j]);
}ll ans=0;while(bt_h()==true)ans+=find_flow(st,inf);
if(ans==tot)return true;return false;
}
int main() {
int T;scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);st=n*m+1,ed=st+1;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)scanf("%lld",&s[i][j]);
memset(map,0,sizeof(map));map[0][1]=1;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if(j==1)map[i][j]=1-map[i-1][j];else map[i][j]=1-map[i][j-1];
}ll s1,c1,s2,c2,mx;s1=c1=s2=c2=mx=0;
for(int i=1;i<=n;i++)for(int j=1;j<=m;j++) {
if(map[i][j]==0) {s1+=s[i][j];c1++;}
else {s2+=s[i][j];c2++;}mx=max(mx,s[i][j]);
}
if(c1!=c2) {
ll x=(s1-s2)/(c1-c2);
if(x>=mx) {
if(check(x)==true)printf("%lld\n",x*c1-s1);
else printf("-1\n");
} else printf("-1\n");
}else {
ll l=mx,r=inf,mid,ans;
while(l<=r) {
mid=(l+r)/2;
if(check(mid)==true) {r=mid-1;ans=mid;}
else l=mid+1;
}printf("%lld\n",ans*c1-s1);
}
}
return 0;
}