[SCOI2012]奇怪的游戏

一、题目

点此看题

二、解法

给定的矩形肯定是一个二分图,我们先对其黑白染色,记 n 1 n_1 n1为白点数量, n 2 n_2 n2为黑点数量, s 1 s_1 s1为白点权值和, s 2 s_2 s2为黑点权值和,首先有一个柿子,设 x x x为最后所有数字的值,则:
x × n 1 − s 1 = x × n 2 − s 2 ⇒ x = ( s 1 − s 2 ) ÷ ( n 1 − n 2 ) x\times n_1-s_1=x\times n_2-s_2\Rightarrow x=(s_1-s_2)\div(n_1-n_2) x×n1s1=x×n2s2x=(s1s2)÷(n1n2)
然后我们就可以分情况讨论了:

  • n 1 ≠ n 2 n_1\not=n_2 n1=n2,直接算出 x x x,然后用 c h e c k check check函数检验。
  • o t h e r w i s e otherwise otherwise,由于黑白点数相等, x x x是有单调性的,可以二分 x x x,然后 c h e c k check check

讲一下 c h e c k check check的写法,我们把所有白点连 S S S,容量为 x − a x-a xa,表示要增加多少次,然后在将白点连相邻的黑点,容量为 i n f inf inf,表示可以接受的增加,然后再将黑点连 T T T,容量为 x − a x-a xa,表示最多能增加的次数,发现这个图的最大流如果等于 ∑ x − a \sum x-a xa,那就是流出的都能被接受,也就是满足条件,知道 x x x之后计算改变次数就比较容易,次数为 x × n 1 − s 1 x\times n_1 -s_1 x×n1s1

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define int long long
#define inf (1ll<<50)
const int MAXN = 2005;
using namespace std;
int read()
{
    int num=0,flag=1;char c;
    while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
    while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
    return num*flag;
}
int n,m,S,T,tot,ans,Max,f[MAXN],cur[MAXN],dis[MAXN];
int dx[4]={-1,1},dy[4]={0,0,1,-1},s1,s2,n1,n2,a[45][45];
queue<int> q;
struct edge
{
	int v,c,next;
}e[MAXN*10];
int cal(int x,int y)
{
	return (x-1)*m+y;
}
void add_edge(int u,int v,int c)
{
	e[++tot]=edge{v,c,f[u]},f[u]=tot;
	e[++tot]=edge{u,0,f[v]},f[v]=tot;
}
int bfs()
{
	memset(dis,0,sizeof dis);
	dis[S]=1;
	q.push(S);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=f[u];i;i=e[i].next)
		{
			int v=e[i].v;
			if(e[i].c>0 && !dis[v])
			{
				dis[v]=dis[u]+1;
				q.push(v);
			}
		}
	}
	if(!dis[T]) return 0;
	return 1;
}
int dfs(int u,int ept)
{
	if(u==T) return ept;
	int flow=0,tmp=0;
	for(int &i=cur[u];i;i=e[i].next)
	{
		int v=e[i].v;
		if(dis[u]+1==dis[v] && e[i].c>0)
		{
			tmp=dfs(v,min(e[i].c,ept));
			if(!tmp) continue;
			ept-=tmp;
			e[i].c-=tmp;
			e[i^1].c+=tmp;
			flow+=tmp;
			if(!ept) break;
		}
	}
	return flow;
}
bool check(int x)
{
	S=0;T=cal(n,m)+1;tot=1;
	int ans=0,sum=0;
	for(int i=S;i<=T;i++)
		f[i]=0;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			if((i+j)%2)
			{
				sum+=x-a[i][j];
				add_edge(S,cal(i,j),x-a[i][j]);
				for(int k=0;k<4;k++)
				{
					int tx=i+dx[k],ty=j+dy[k];
					if(tx>=1 && tx<=n && ty>=1 && ty<=m)
						add_edge(cal(i,j),cal(tx,ty),inf);
				}
			}
			else
				add_edge(cal(i,j),T,x-a[i][j]);
	while(bfs())
	{
		for(int i=S;i<=T;i++)
			cur[i]=f[i];
		ans+=dfs(S,inf);
	}
	return ans==sum;
}
void solve(int l,int r)
{
	if(l>r) return ;
	int mid=(l+r)/2;
	if(check(mid))
	{
		ans=mid;
		solve(l,mid-1);
	}
	else
		solve(mid+1,r);
}
signed main()
{
	int Text=read(),Cases=0;
	while(Text--)
	{
		ans=s1=s2=n1=n2=Max=0;
		n=read();m=read();
		for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
			{
				a[i][j]=read();
				if((i+j)%2)
					n1++,s1+=a[i][j];
				else
					n2++,s2+=a[i][j];
				Max=max(Max,a[i][j]);
			}
		if(n1!=n2)
		{
			int x=(s1-s2)/(n1-n2);
			if(x<Max || !check(x))
				puts("-1");
			else
				printf("%lld\n",x*n1-s1);
		}
		else
		{
			if(s1!=s2)
			{
				puts("-1");
				continue;
			}
			solve(Max,inf/100);
			if(ans==0)
				puts("-1");
			else
				printf("%lld\n",ans*n1-s1);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值