一、题目
二、解法
给定的矩形肯定是一个二分图,我们先对其黑白染色,记
n
1
n_1
n1为白点数量,
n
2
n_2
n2为黑点数量,
s
1
s_1
s1为白点权值和,
s
2
s_2
s2为黑点权值和,首先有一个柿子,设
x
x
x为最后所有数字的值,则:
x
×
n
1
−
s
1
=
x
×
n
2
−
s
2
⇒
x
=
(
s
1
−
s
2
)
÷
(
n
1
−
n
2
)
x\times n_1-s_1=x\times n_2-s_2\Rightarrow x=(s_1-s_2)\div(n_1-n_2)
x×n1−s1=x×n2−s2⇒x=(s1−s2)÷(n1−n2)
然后我们就可以分情况讨论了:
- n 1 ≠ n 2 n_1\not=n_2 n1=n2,直接算出 x x x,然后用 c h e c k check check函数检验。
- o t h e r w i s e otherwise otherwise,由于黑白点数相等, x x x是有单调性的,可以二分 x x x,然后 c h e c k check check。
讲一下 c h e c k check check的写法,我们把所有白点连 S S S,容量为 x − a x-a x−a,表示要增加多少次,然后在将白点连相邻的黑点,容量为 i n f inf inf,表示可以接受的增加,然后再将黑点连 T T T,容量为 x − a x-a x−a,表示最多能增加的次数,发现这个图的最大流如果等于 ∑ x − a \sum x-a ∑x−a,那就是流出的都能被接受,也就是满足条件,知道 x x x之后计算改变次数就比较容易,次数为 x × n 1 − s 1 x\times n_1 -s_1 x×n1−s1。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define int long long
#define inf (1ll<<50)
const int MAXN = 2005;
using namespace std;
int read()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=(num<<3)+(num<<1)+(c^48),c=getchar();
return num*flag;
}
int n,m,S,T,tot,ans,Max,f[MAXN],cur[MAXN],dis[MAXN];
int dx[4]={-1,1},dy[4]={0,0,1,-1},s1,s2,n1,n2,a[45][45];
queue<int> q;
struct edge
{
int v,c,next;
}e[MAXN*10];
int cal(int x,int y)
{
return (x-1)*m+y;
}
void add_edge(int u,int v,int c)
{
e[++tot]=edge{v,c,f[u]},f[u]=tot;
e[++tot]=edge{u,0,f[v]},f[v]=tot;
}
int bfs()
{
memset(dis,0,sizeof dis);
dis[S]=1;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=f[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].c>0 && !dis[v])
{
dis[v]=dis[u]+1;
q.push(v);
}
}
}
if(!dis[T]) return 0;
return 1;
}
int dfs(int u,int ept)
{
if(u==T) return ept;
int flow=0,tmp=0;
for(int &i=cur[u];i;i=e[i].next)
{
int v=e[i].v;
if(dis[u]+1==dis[v] && e[i].c>0)
{
tmp=dfs(v,min(e[i].c,ept));
if(!tmp) continue;
ept-=tmp;
e[i].c-=tmp;
e[i^1].c+=tmp;
flow+=tmp;
if(!ept) break;
}
}
return flow;
}
bool check(int x)
{
S=0;T=cal(n,m)+1;tot=1;
int ans=0,sum=0;
for(int i=S;i<=T;i++)
f[i]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if((i+j)%2)
{
sum+=x-a[i][j];
add_edge(S,cal(i,j),x-a[i][j]);
for(int k=0;k<4;k++)
{
int tx=i+dx[k],ty=j+dy[k];
if(tx>=1 && tx<=n && ty>=1 && ty<=m)
add_edge(cal(i,j),cal(tx,ty),inf);
}
}
else
add_edge(cal(i,j),T,x-a[i][j]);
while(bfs())
{
for(int i=S;i<=T;i++)
cur[i]=f[i];
ans+=dfs(S,inf);
}
return ans==sum;
}
void solve(int l,int r)
{
if(l>r) return ;
int mid=(l+r)/2;
if(check(mid))
{
ans=mid;
solve(l,mid-1);
}
else
solve(mid+1,r);
}
signed main()
{
int Text=read(),Cases=0;
while(Text--)
{
ans=s1=s2=n1=n2=Max=0;
n=read();m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
a[i][j]=read();
if((i+j)%2)
n1++,s1+=a[i][j];
else
n2++,s2+=a[i][j];
Max=max(Max,a[i][j]);
}
if(n1!=n2)
{
int x=(s1-s2)/(n1-n2);
if(x<Max || !check(x))
puts("-1");
else
printf("%lld\n",x*n1-s1);
}
else
{
if(s1!=s2)
{
puts("-1");
continue;
}
solve(Max,inf/100);
if(ans==0)
puts("-1");
else
printf("%lld\n",ans*n1-s1);
}
}
}