数论学习笔记


最大公因数gcd

辗转相除法

定理: a,b属于正整数,gcd(a,b)=gcd(b,a%b)

int gcd(int x,int y){
	if(y==0)return x;//当x=y时,x就是最大公因数
	else return gcd(y,x%y);//递归
}
#include <iostream>
using namespace std;
int gcd(int x,int y){
    return y==0?x:gcd(y,x%y);
}
int main(){
    int x,y;
    cin>>x>>y;
    cout<<gcd(x,y);
    return 0;
}

最小公倍数lcm

gcd(a,b) * lcm(a,b)=a*b
lcm(a,b)=(a/gcd(a,b))*b

#include <iostream>
using namespace std;
int gcd(int x,int y){
    return y==0?x:gcd(y,x%y);
}
int main(){
    int x,y;
    cin>>x>>y;
    cout<<(x/gcd(x,y))*y;//就这改了
    return 0;
}

扩展欧几里得

a,b为正整数,x,y为整数,ax+by=gcd(a,b)
ax1+by1=ay2+b(x)
x1=y2 y1=x2-(a/b)y2

void exgcd(int a,int b,int& x,int& y){
	if(b==0){x=1;y=0;return;}//边界条件
	int x1,y1;
	exgcd(b,a%b,x,y);
	x=y1;
	y=x1-(a/b)*y1;
}

都乘c/gcd(a/b)
acx1/gcd+bcy1/gcd=c
x=cx1/gcd,y=cy1/gcd
充要条件c%gcd(a,b)=0

素数判断

6k+1判法

bool prime(int n){
    if(n==2||n==3)return 1;
    if(n%6!=1&&n%6!=5)return 0;
    for(int i=5;i<=sqrt(n);i+=6){
        if(n%i==0||n%(i+2)==0)return 0;
    }
    return 1;
}

Miller Rabin素性测试

素数表获取

埃筛

#include<iostream>
#include<cmath>
using namespace std;
int npri[10010],pri[10010],cnt,n;
void Eratos(int x){
	for(int i=2;i<=x;i++){
		if(!npri[i]){
			pri[++cnt]=i;//如果npri[i]为零,把i存入pri中
			for(int j=2*i;j<=x;j+=i)npri[j]=1;//pri[i]的倍数都不是素数
		}
	}
}
int main(){
	cin>>n;
	Eratos(n);
	for(int i=1;i<=cnt;i++)cout<<pri[i]<<' ';
	return 0;
}	

欧拉筛:埃筛基础上每个合数只筛一次

void Euler(int x){
	for(int i=2;i<=x;i++){
		if(!npri[i]){
			npri[i]=i;
			pri[++cnt]=i;
		}
		for(int j=1;j<=cnt&&i*pri[j]<x;j++){
			if(pri[j]>npri[i])break;//若npri[i的倍数]值为i,就跳出循环
			npri[i*pri[j]]=pri[j];//npri[i的倍数]的值均为i
		}
	}
}

质因子分解

算数基本定理:N不为质数,N=p1^a1 *… *pn^an
质因数分解枚举1~sqrt(n),若n仍大于1,则记录其入数组

组合数

c(n,m)=c(n-1,m)+c(n-1,m-1)

求逆元

void getinv(){
	inv[0]=inv[1]=1;
	invp[1]=1;
	for(int i=2;i<=2000000;i++){
		inv[i]=(long long)(k-k/i)*inv[k%i]%k;
		invp[i]=invp[i-1]*inv[i]%k;
	}
}
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值