最大公因数gcd
辗转相除法
定理: a,b属于正整数,gcd(a,b)=gcd(b,a%b)
int gcd(int x,int y){
if(y==0)return x;//当x=y时,x就是最大公因数
else return gcd(y,x%y);//递归
}
#include <iostream>
using namespace std;
int gcd(int x,int y){
return y==0?x:gcd(y,x%y);
}
int main(){
int x,y;
cin>>x>>y;
cout<<gcd(x,y);
return 0;
}
最小公倍数lcm
gcd(a,b) * lcm(a,b)=a*b
lcm(a,b)=(a/gcd(a,b))*b
#include <iostream>
using namespace std;
int gcd(int x,int y){
return y==0?x:gcd(y,x%y);
}
int main(){
int x,y;
cin>>x>>y;
cout<<(x/gcd(x,y))*y;//就这改了
return 0;
}
扩展欧几里得
a,b为正整数,x,y为整数,ax+by=gcd(a,b)
ax1+by1=ay2+b(x)
x1=y2 y1=x2-(a/b)y2
void exgcd(int a,int b,int& x,int& y){
if(b==0){x=1;y=0;return;}//边界条件
int x1,y1;
exgcd(b,a%b,x,y);
x=y1;
y=x1-(a/b)*y1;
}
都乘c/gcd(a/b)
acx1/gcd+bcy1/gcd=c
x=cx1/gcd,y=cy1/gcd
充要条件c%gcd(a,b)=0
素数判断
6k+1判法
bool prime(int n){
if(n==2||n==3)return 1;
if(n%6!=1&&n%6!=5)return 0;
for(int i=5;i<=sqrt(n);i+=6){
if(n%i==0||n%(i+2)==0)return 0;
}
return 1;
}
Miller Rabin素性测试
素数表获取
埃筛
#include<iostream>
#include<cmath>
using namespace std;
int npri[10010],pri[10010],cnt,n;
void Eratos(int x){
for(int i=2;i<=x;i++){
if(!npri[i]){
pri[++cnt]=i;//如果npri[i]为零,把i存入pri中
for(int j=2*i;j<=x;j+=i)npri[j]=1;//pri[i]的倍数都不是素数
}
}
}
int main(){
cin>>n;
Eratos(n);
for(int i=1;i<=cnt;i++)cout<<pri[i]<<' ';
return 0;
}
欧拉筛:埃筛基础上每个合数只筛一次
void Euler(int x){
for(int i=2;i<=x;i++){
if(!npri[i]){
npri[i]=i;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&i*pri[j]<x;j++){
if(pri[j]>npri[i])break;//若npri[i的倍数]值为i,就跳出循环
npri[i*pri[j]]=pri[j];//npri[i的倍数]的值均为i
}
}
}
质因子分解
算数基本定理:N不为质数,N=p1^a1 *… *pn^an
质因数分解枚举1~sqrt(n),若n仍大于1,则记录其入数组
组合数
c(n,m)=c(n-1,m)+c(n-1,m-1)
求逆元
void getinv(){
inv[0]=inv[1]=1;
invp[1]=1;
for(int i=2;i<=2000000;i++){
inv[i]=(long long)(k-k/i)*inv[k%i]%k;
invp[i]=invp[i-1]*inv[i]%k;
}
}