Leetcode 120. Triangle

29 篇文章 0 订阅
11 篇文章 0 订阅

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Analysis:

This is basically a implementation of dynamic programming, cause, if you want to get the minimum value for several numbers added. 

like sum = a1 + a2 + a3 + a4 + a5 + a6 and so on. You have to make sure that a6 is the most minimum value you can get. So gradually you get the most minimum value for the whole sum.

This is dynamic programming, if you want to make , so a1 has been here and you want to make sure that a2+a3+a4+a5+a6 is the minimum value. and 

So then if you want to make sure a2 + a3 + a4......you have to make sure that a3 +a4+a5.... is the minimum for specific a2. So That means using dynamic programming, you can make sure that from the bottom to the top, there should be the minimum.

public int minimumTotal(List<List<Integer>> triangle) {
    if(triangle.size()==1)
        return triangle.get(0).get(0);
        
    int[] dp = new int[triangle.size()];

    //initial by last row 
    for (int i = 0; i < triangle.get(triangle.size() - 1).size(); i++) {
        dp[i] = triangle.get(triangle.size() - 1).get(i);
    }
 
    // iterate from last second row
    for (int i = triangle.size() - 2; i >= 0; i--) {
        for (int j = 0; j < triangle.get(i).size(); j++) {
            dp[j] = Math.min(dp[j], dp[j + 1]) + triangle.get(i).get(j);
        }
    }
    return dp[0];
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值