18.二叉树的非递归遍历

1.用栈实现二叉树先序遍历

算法思想:

1.先把头节点入栈
2.如果栈不空,先出栈,打印当前节点 先压右 再压左 

代码如下:

	public static class TreeNode {
		public int val;
		public TreeNode left;
		public TreeNode right;

		public TreeNode(int v) {
			val = v;
		}
	}

	// 先序打印所有节点,非递归版
	public static void preOrder(TreeNode head) {
		if (head != null) {
			Stack<TreeNode> stack = new Stack<>();
			stack.push(head);
			while (!stack.isEmpty()) {
				head = stack.pop();
				System.out.print(head.val + " ");
				if (head.right != null) {
					stack.push(head.right);
				}
				if (head.left != null) {
					stack.push(head.left);
				}
			}
			System.out.println();
		}
	}

2.用栈实现二叉树中序遍历

算法思想:

1.把子树左边界全压进栈
2.弹出节点、打印压节点、压入右节点后重复1
3.没子树且栈空停止

代码如下:

	// 中序打印所有节点,非递归版
	public static void inOrder(TreeNode head) {
		if (head != null) {
			Stack<TreeNode> stack = new Stack<>();
			while (!stack.isEmpty() || head != null) {
				if (head != null) {
					stack.push(head);
					head = head.left;
				} else {
					head = stack.pop();
					System.out.print(head.val + " ");
					head = head.right;
				}
			}
			System.out.println();
		}
	}

3.用两个栈实现二叉树后序遍历

好写但是不推荐,因为需要收集所有节点,最后逆序弹出,额外空间复杂度为O(n)
算法思想:

1.把非递归先序遍历改为先压左再压右     这样就变成了 中 右 左
2.然后按照题目1的方法,每次打印时不打印,入第二个栈
3.遍历完后,打印第二个栈的内容

代码如下:

	// 后序打印所有节点,非递归版
	// 这是用两个栈的方法
	public static void posOrderTwoStacks(TreeNode head) {
		if (head != null) {
			Stack<TreeNode> stack = new Stack<>();
			Stack<TreeNode> collect = new Stack<>();
			stack.push(head);
			while (!stack.isEmpty()) {
				head = stack.pop();
				collect.push(head);
				if (head.left != null) {
					stack.push(head.left);
				}
				if (head.right != null) {
					stack.push(head.right);
				}
			}
			while (!collect.isEmpty()) {
				System.out.print(collect.pop().val + " ");
			}
			System.out.println();
		}
	}

4.用一个栈实现二叉树后序遍历

算法思想:

用一个哨兵

代码如下:

	// 后序打印所有节点,非递归版
	// 这是用一个栈的方法
	public static void posOrderOneStack(TreeNode h) {
		if (h != null) {
			Stack<TreeNode> stack = new Stack<>();
			stack.push(h);
			// 如果始终没有打印过节点,h就一直是头节点
			// 一旦打印过节点,h就变成打印节点
			// 之后h的含义 : 上一次打印的节点
			while (!stack.isEmpty()) {
				TreeNode cur = stack.peek();
				if (cur.left != null && h != cur.left && h != cur.right) {
					// 有左树且左树没处理过
					stack.push(cur.left);
				} else if (cur.right != null && h != cur.right) {
					// 有右树且右树没处理过
					stack.push(cur.right);
				} else {
					// 左树、右树 没有 或者 都处理过了
					System.out.print(cur.val + " ");
					h = stack.pop();
				}
			}
			System.out.println();
		}
	}

遍历二叉树复杂度分析:

a. 时间复杂度O(n),递归和非递归都是每个节点遇到有限几次,当然O(n)
b. 额外空间复杂度O(h),递归和非递归都需要二叉树高度h的空间来保存路径,方便回到上级去
c. 存在时间复杂度O(n),额外空间复杂度O(1)的遍历方式:Morris遍历
d. Morris遍历比较难,也比较冷门,会在【扩展】课程里讲述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值