1.用栈实现二叉树先序遍历
算法思想:
1.先把头节点入栈
2.如果栈不空,先出栈,打印当前节点 先压右 再压左
代码如下:
public static class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int v) {
val = v;
}
}
// 先序打印所有节点,非递归版
public static void preOrder(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
stack.push(head);
while (!stack.isEmpty()) {
head = stack.pop();
System.out.print(head.val + " ");
if (head.right != null) {
stack.push(head.right);
}
if (head.left != null) {
stack.push(head.left);
}
}
System.out.println();
}
}
2.用栈实现二叉树中序遍历
算法思想:
1.把子树左边界全压进栈
2.弹出节点、打印压节点、压入右节点后重复1
3.没子树且栈空停止
代码如下:
// 中序打印所有节点,非递归版
public static void inOrder(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || head != null) {
if (head != null) {
stack.push(head);
head = head.left;
} else {
head = stack.pop();
System.out.print(head.val + " ");
head = head.right;
}
}
System.out.println();
}
}
3.用两个栈实现二叉树后序遍历
好写但是不推荐,因为需要收集所有节点,最后逆序弹出,额外空间复杂度为O(n)
算法思想:
1.把非递归先序遍历改为先压左再压右 这样就变成了 中 右 左
2.然后按照题目1的方法,每次打印时不打印,入第二个栈
3.遍历完后,打印第二个栈的内容
代码如下:
// 后序打印所有节点,非递归版
// 这是用两个栈的方法
public static void posOrderTwoStacks(TreeNode head) {
if (head != null) {
Stack<TreeNode> stack = new Stack<>();
Stack<TreeNode> collect = new Stack<>();
stack.push(head);
while (!stack.isEmpty()) {
head = stack.pop();
collect.push(head);
if (head.left != null) {
stack.push(head.left);
}
if (head.right != null) {
stack.push(head.right);
}
}
while (!collect.isEmpty()) {
System.out.print(collect.pop().val + " ");
}
System.out.println();
}
}
4.用一个栈实现二叉树后序遍历
算法思想:
用一个哨兵
代码如下:
// 后序打印所有节点,非递归版
// 这是用一个栈的方法
public static void posOrderOneStack(TreeNode h) {
if (h != null) {
Stack<TreeNode> stack = new Stack<>();
stack.push(h);
// 如果始终没有打印过节点,h就一直是头节点
// 一旦打印过节点,h就变成打印节点
// 之后h的含义 : 上一次打印的节点
while (!stack.isEmpty()) {
TreeNode cur = stack.peek();
if (cur.left != null && h != cur.left && h != cur.right) {
// 有左树且左树没处理过
stack.push(cur.left);
} else if (cur.right != null && h != cur.right) {
// 有右树且右树没处理过
stack.push(cur.right);
} else {
// 左树、右树 没有 或者 都处理过了
System.out.print(cur.val + " ");
h = stack.pop();
}
}
System.out.println();
}
}
遍历二叉树复杂度分析:
a. 时间复杂度O(n),递归和非递归都是每个节点遇到有限几次,当然O(n)
b. 额外空间复杂度O(h),递归和非递归都需要二叉树高度h的空间来保存路径,方便回到上级去
c. 存在时间复杂度O(n),额外空间复杂度O(1)的遍历方式:Morris遍历
d. Morris遍历比较难,也比较冷门,会在【扩展】课程里讲述