思想
洪水填充是一种很简单的技巧,设置路径信息进行剪枝和统计,类似感染的过程
路径信息不撤销,来保证每一片的感染过程可以得到区分
看似是暴力递归过程,其实时间复杂度非常好,遍历次数和样本数量的规模一致
(图的dfs遍历+感染)
题目1、岛屿数量
问题描述:
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成
此外,你可以假设该网格的四条边均被水包围
测试链接 :
https://leetcode.cn/problems/number-of-islands/
算法思想:
将图的每个节点都判断,如果当前节点是1,就代表当前是一片陆地(陆地数量++),然后用dfs将这个1的相链的1全感染成0
代码如下:
public class Code01_NumberOfIslands {
// 洪水填充的做法
// board : n * m
// O(n*m)最优解!
public static int numIslands(char[][] board) {
int n = board.length;
int m = board[0].length;
int islands = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == '1') {
islands++;
dfs(board, n, m, i, j);
}
}
}
return islands;
}
public static void dfs(char[][] board, int n, int m, int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || board[i][j] != '1') {
return;
}
// board[i][j] = '1'
board[i][j] = 0;
dfs(board, n, m, i - 1, j);
dfs(board, n, m, i + 1, j);
dfs(board, n, m, i, j - 1);
dfs(board, n, m, i, j + 1);
}
}
题目2、被围绕的区域
问题描述:
给你一个 m x n 的矩阵 board ,由若干字符 ‘X’ 和 ‘O’ ,找到所有被 ‘X’ 围绕的区域
并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。
测试链接 :
https://leetcode.cn/problems/surrounded-regions/
算法思想:
从最外层的边界开始判断,如果边界是“O”,则将“O”改成“F”,并且将它连着的“O”全部感染成“F”。
此时再遍历一次矩阵,这时的“O”一定是被“X”围住的,我们只需将“O”变为“X”。再遍历一次矩阵,“F”变回“O”即可
代码如下:
public class Code02_SurroundedRegions {
public static void solve(char[][] board) {
int n = board.length;
int m = board[0].length;
//最外层感染
for (int j = 0; j < m; j++) {
if (board[0][j] == 'O') {
dfs(board, n, m, 0, j);
}
if (board[n - 1][j] == 'O') {
dfs(board, n, m, n - 1, j);
}
}
for (int i = 1; i < n - 1; i++) {
if (board[i][0] == 'O') {
dfs(board, n, m, i, 0);
}
if (board[i][m - 1] == 'O') {
dfs(board, n, m, i, m - 1);
}
}
//'O'填'X' 'F'填'0'
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == 'O') {
board[i][j] = 'X';
}
if (board[i][j] == 'F') {
board[i][j] = 'O';
}
}
}
}
public static void dfs(char[][] board, int n, int m, int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || board[i][j] != 'O') {
return;
}
board[i][j] = 'F';
dfs(board, n, m, i + 1, j);
dfs(board, n, m, i - 1, j);
dfs(board, n, m, i, j + 1);
dfs(board, n, m, i, j - 1);
}
}
题目3、最大人工岛
问题描述:
给你一个大小为 n * n 二进制矩阵 grid 。最多 只能将一格 0 变成 1 。
返回执行此操作后,grid 中最大的岛屿面积是多少?
岛屿 由一组上、下、左、右四个方向相连的 1 形成
测试链接 :
https://leetcode.cn/problems/making-a-large-island/
算法思想:
首先遍历一边矩阵,将岛都给他来一个编号。使用sizes数组来存放第i号到面积是多大。然后讨论所有的0,变成1,能带来的最大岛的大小
代码如下:
public class Code03_MakingLargeIsland {
public static int largestIsland(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int id = 2;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
dfs(grid, n, m, i, j, id++);
}
}
}
int[] sizes = new int[id];
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] > 1) {
ans = Math.max(ans, ++sizes[grid[i][j]]);
}
}
}
// 讨论所有的0,变成1,能带来的最大岛的大小
boolean[] visited = new boolean[id];
int up, down, left, right, merge;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) {
up = i > 0 ? grid[i - 1][j] : 0;
down = i + 1 < n ? grid[i + 1][j] : 0;
left = j > 0 ? grid[i][j - 1] : 0;
right = j + 1 < m ? grid[i][j + 1] : 0;
visited[up] = true;
merge = 1 + sizes[up];
if (!visited[down]) {
merge += sizes[down];
visited[down] = true;
}
if (!visited[left]) {
merge += sizes[left];
visited[left] = true;
}
if (!visited[right]) {
merge += sizes[right];
visited[right] = true;
}
ans = Math.max(ans, merge);
visited[up] = false;
visited[down] = false;
visited[left] = false;
visited[right] = false;
}
}
}
return ans;
}
public static void dfs(int[][] grid, int n, int m, int i, int j, int id) {
if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
return;
}
// grid[i][j] == 1
grid[i][j] = id;
dfs(grid, n, m, i - 1, j, id);
dfs(grid, n, m, i + 1, j, id);
dfs(grid, n, m, i, j - 1, id);
dfs(grid, n, m, i, j + 1, id);
}
}
题目4、打砖块
问题描述:
有一个 m * n 的二元网格 grid ,其中 1 表示砖块,0 表示空白
砖块 稳定(不会掉落)的前提是:
一块砖直接连接到网格的顶部,或者
至少有一块相邻(4 个方向之一)砖块 稳定 不会掉落时
给你一个数组 hits ,这是需要依次消除砖块的位置
每当消除 hits[i] = (rowi, coli) 位置上的砖块时,对应位置的砖块(若存在)会消失
然后其他的砖块可能因为这一消除操作而 掉落
一旦砖块掉落,它会 立即 从网格 grid 中消失(即,它不会落在其他稳定的砖块上)
返回一个数组 result ,其中 result[i] 表示第 i 次消除操作对应掉落的砖块数目。
注意,消除可能指向是没有砖块的空白位置,如果发生这种情况,则没有砖块掉落。
测试链接 :
https://leetcode.cn/problems/bricks-falling-when-hit/
算法思想:
1.炮弹所在位置矩阵数值-1
2.洪水填充天花板
3.时光倒流处理炮弹(从底向上考察当前炮弹如果+1能不能吧天花板接上)
代码如下:
public class Code04_BricksFallingWhenHit {
public static int n, m;
public static int[][] grid;
public static int[] hitBricks(int[][] g, int[][] h) {
grid = g;
n = g.length;
m = g[0].length;
int[] ans = new int[h.length];
if (n == 1) {
return ans;
}
for (int[] hit : h) {
grid[hit[0]][hit[1]]--;
}
for (int i = 0; i < m; i++) {
dfs(0, i);
}
for (int i = h.length - 1, row, col; i >= 0; i--) {
row = h[i][0];
col = h[i][1];
grid[row][col]++;
if (worth(row, col)) {
ans[i] = dfs(row, col) - 1;
}
}
return ans;
}
// 从(i,j)格子出发,遇到1就感染成2
// 统计新增了几个2!
public static int dfs(int i, int j) {
if (i < 0 || i == n || j < 0 || j == m || grid[i][j] != 1) {
return 0;
}
grid[i][j] = 2;
return 1 + dfs(i + 1, j) + dfs(i, j + 1) + dfs(i - 1, j) + dfs(i, j - 1);
}
public static boolean worth(int i, int j) {
return grid[i][j] == 1
&&
(i == 0
|| (i > 0 && grid[i - 1][j] == 2)
|| (i < n - 1 && grid[i + 1][j] == 2)
|| (j > 0 && grid[i][j - 1] == 2)
|| (j < m - 1 && grid[i][j + 1] == 2));
}
}