在N*N(N<=10)的棋盘上放N个皇后,使得她们不能相互攻击。两个皇后能相互攻击当且仅当它们在同一行,或者同一列,或者同一条对角线上。
找出一共有多少种放置方法。
输入
第一行输入N。
输出
输出方案总数。
样例输入
4
样例输出
2
数据范围限制
N<=10
解题报告:
典型的深搜。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cctype>
#include<iomanip>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
using namespace std;
int n,ans;
int a[100]; //a[i]=j 表示第i行第j列的皇后
bool col[100],obl1[100],obl2[100];//列标记,对角线标记
void dfs(int row)
{
for(int i=1;i<=n;i++)
{
if(!col[i] and !obl1[i+row]&&!obl2[i-row+n])
{
col[i]=obl1[i+row]=obl2[i-row+n]=true;//占领这里
if(row==n)ans++;
else dfs(row+1);
col[i]=obl1[i+row]=obl2[i-row+n]=false;//回溯
}
}
return ;
}
int main()
{
cin>>n;
dfs(1);
cout<<ans<<endl;
return 0;
}
语种:C++