题目描述
给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/3sum
思路
找出数组中的所有和为0的三个数组合。
先想一下如何求所有和为0的两个数的组合。可以这样考虑,先将数组从小到大排序,再设置两个指针low和high分别初始为数组两端,计算两个指针的和sum,
根据sum与0的大小关系适当调整指针:
- 若sum > 0,说明和有点大了,应该小一点,则应该将high左移;
- 若sum < 0,说明和有点小了,应该大一点,则应该将low右移;
- 若sum = 0,说明刚刚好,记录即可,然后同时将low和high向中间移。
三个数的话其实思路是一致的只是外面多一层循环而已。先将数组排序,外层循环就是将当前位置的数定为第一个数,然后就进入内层循环进行类似两个数的和的操作。
注意跳过重复元素。
时间复杂度O(n^2),空间复杂度O(1)
C++
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>>res;
int len = nums.size();
if(len < 3) return res;
sort(nums.begin(), nums.end());
for(int i = 0; i < len - 2; i++){ // nums[i] 为三个数的第一个数
if(i > 0 && nums[i] == nums[i - 1]) continue;
int low = i + 1, high = nums.size() - 1;
while(low < high){
int sum = nums[i] + nums[low] + nums[high];
if(sum < 0)
while(++low < high && nums[low] == nums[low - 1]) ; // 不断右移low指针
else if(sum > 0)
while(low < --high && nums[high] == nums[high + 1]) ; // 不断左移high指针
else{
res.push_back(vector<int>{nums[i], nums[low], nums[high]});
while(low < high && nums[++low] == nums[low - 1]) ;
while(low < high && nums[--high] == nums[high + 1]) ;
}
}
}
return res;
}
};
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
int target;
vector<vector<int>> ans;
if(nums.size() < 3) return ans;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size()-2; i++) {
if (i > 0 && nums[i] == nums[i - 1]) continue;
if ((target = nums[i]) > 0) break; //第一个数都大于一,直接退出for循环
int l = i + 1, r = nums.size() - 1; //分别指第二个数和第三个数
while (l < r) {
if (nums[l] + nums[r] + target < 0) ++l;
else if (nums[l] + nums[r] + target > 0) --r;
else {
ans.push_back({target, nums[l], nums[r]});
++l, --r;
while (l < r && nums[l] == nums[l - 1]) ++l;
while (l < r && nums[r] == nums[r + 1]) --r;
}
}
}
return ans;
}
};