垒骰子

第9题—垒骰子

蓝桥杯第六届C++B组省赛第9题
附加一个刷题传送门

题目描述

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥! 我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。

两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。 由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」

 2 1
 1 2  

「样例输出」

544 

「数据范围」
对于 30% 的数据:n <= 5 对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 < 256M CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。 注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。

输出格式
共一个数,表示答案模 1e9+7 的结果。

数据范围
1≤n≤1e9,
1≤m≤36,
1≤a,b≤6

算法1 (矩阵快速幂) O ( l o g 2 n ) O(log2n) O(log2n)

算法描述:在O(log2n)的时间复杂度下求出 矩阵A的n次方

分析此题:f[i][j]表示考虑前i个骰子,且第i个骰子上面是点数j时的方案数,我这里先没有考虑骰子可以转动。

状态转移方程:
f[i][j] = f[i-1][1] + f[i-1][2] +f[i-1][3] + f[i-1][4] + f[i-1][5] + f[i-1][6]
可以放就+,不能放就不+。

设矩阵A是冲突矩阵, A[i][j] = 0 表示当上一个骰子上面点数是i时,下一个骰子上面点数不能是j。
可以得到:
A ^ (n - 1) * [1 1 1 1 1 1] = [ f[n][1] f[n][2] f[n][3] f[n][4] f[n][5] f[n][6] ];(列向量)
所以把A中的36个元素加起来就是不考虑可以旋转答案。
考虑旋转:乘以4的n次幂(这里也使用快速幂)

时间复杂度

快速幂得时间复杂度是O(log2n),矩阵乘法的是O(n^3)

参考文献

https://blog.csdn.net/qq_34594236/article/details/53616283

C++ 代码
#include <iostream>
#include <cstring>

using namespace std;

typedef long long LL;

const int N = 10, mod = 1e9 + 7;

int n, m;
int op[7] = { 0, 4, 5, 6, 1, 2, 3 };//反面 1 - 4, 2 - 5, 3 - 6

LL fast_power(int a, int k, int p)
{
    LL res = 1;
    while (k)
    {
        if (k & 1) res = res * a % p;
        a = a * (LL)a % p;//注意强制转换为long long
        k >>= 1;
    }
    return res;
}

//定义一个矩阵结构体
struct Matrix
{
    int row, col;//行数与列数
    LL a[N][N];//这道题目使用long long
    Matrix(int x, int y)
    {
        memset(a, 0, sizeof a);
        row = x, col = y;
    }
};

// 矩阵乘法
Matrix mul(Matrix a, Matrix b)
{
    Matrix ans(a.row, b.col);//答案的行数和a的行数相等,列数与b的列数相等
    for (int i = 1; i <= ans.row; i++)
        for (int j = 1; j <= ans.col; j++)
            for (int k = 1; k <= a.col; k++)
                ans.a[i][j] = (ans.a[i][j] + a.a[i][k] * b.a[k][j]) % mod;

    return ans;
}

//矩阵的快速幂---a^k
Matrix fast_power(Matrix a, int k)
{
    Matrix ans(a.row, a.col);
    for (int i = 1; i <= a.row; i++) ans.a[i][i] = 1;//初始答案为单位矩阵

    Matrix tmp = a;
    while (k)
    {
        if (k & 1) ans = mul(ans, tmp);
        tmp = mul(tmp, tmp);
        k >>= 1;
    }
    return ans;
}

int main()
{
    cin >> n >> m;
    Matrix A(6, 6);
    for (int i = 1; i <= 6; i++)
        for (int j = 1; j <= 6; j++)
            A.a[i][j] = 1;

    for (int i = 0; i < m; i++)
    {
        int a, b;
        cin >> a >> b;
        A.a[op[a]][b] = A.a[op[b]][a] = 0;
    }

    //数据处理 
    Matrix ans = fast_power(A, n - 1);
    
    LL sum = 0;
    for (int i = 1; i <= 6; i++)
        for (int j = 1; j <= 6; j++)
            sum = (sum + ans.a[i][j]) % mod;
    
    //考虑骰子可以转动
    int res = sum * fast_power(4, n, mod) % mod;
    cout << res << endl;

    return 0;
}
  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值