Spark读取数据库(Mysql)的四种方式讲解

 目前Spark支持四种方式从数据库中读取数据,这里以Mysql为例进行介绍。

一、不指定查询条件

  这个方式链接MySql的函数原型是:

def jdbc(url : String, table : String, properties : Properties) : DataFrame

  我们只需要提供Driver的url,需要查询的表名,以及连接表相关属性properties。下面是具体例子:

var propdb = new java.util.Properties
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.jdbc("jdbc:mysql://10.1.13.65:3306/obd_cxm?user=root&password=123456", "statistics_car", propdb )
 
println(df.count())
println(df.rdd.partitions.size)

 

我们运行上面的程序,可以看到df.rdd.partitions.size输出结果是1,这个结果的含义是iteblog表的所有数据都是由RDD的一个分区处理的,所以说,如果你这个表很大,很可能会出现OOM

WARN TaskSetManager : Lost task 0.0 in stage 1.0 (TID 14 , spark 047219 ) :
  java.lang.OutOfMemoryError : GC overhead limit exceeded at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java : 3380 )

这种方式在数据量大的时候不建议使用。

带条件的查询,此处用到了不为null ,注意需要都小写



二、指定数据库字段的范围

  这种方式就是通过指定数据库中某个字段的范围,但是遗憾的是,这个字段必须是数字,来看看这个函数的函数原型:

def jdbc(
     url : String,
     table : String,
     columnName : String,
     lowerBound : Long,
     upperBound : Long,
     numPartitions : Int,
     connectionProperties : Properties) : DataFrame

  前两个字段的含义和方法一类似。columnName就是需要分区的字段,这个字段在数据库中的类型必须是数字;lowerBound就是分区的下界;upperBound就是分区的上界;numPartitions是分区的个数。同样,我们也来看看如何使用:

val lowerBound = 1
val upperBound = 100000
val numPartitions = 5
 
val prop = new Properties()
val df = sqlContext.read.jdbc(url, "iteblog" , "id" , lowerBound, upperBound, numPartitions, prop)

  这个方法可以将iteblog表的数据分布到RDD的几个分区中,分区的数量由numPartitions参数决定,在理想情况下,每个分区处理相同数量的数据,我们在使用的时候不建议将这个值设置的比较大,因为这可能导致数据库挂掉!但是根据前面介绍,这个函数的缺点就是只能使用整形数据字段作为分区关键字。


  这个函数在极端情况下,也就是设置将numPartitions设置为1,其含义和第一种方式一致。

三、根据任意字段进行分区

  基于前面两种方法的限制,Spark还提供了根据任意字段进行分区的方法,函数原型如下:

def jdbc(
     url : String,
     table : String,
     predicates : Array[String],
     connectionProperties : Properties) : DataFrame

这个函数相比第一种方式多了predicates参数,我们可以通过这个参数设置分区的依据,来看看例子:

val predicates = Array[String]( "reportDate <= '2014-12-31'" ,
     "reportDate > '2014-12-31' and reportDate <= '2015-12-31'" )
 
val prop = new Properties()
val df = sqlContext.read.jdbc(url, "iteblog" , predicates, prop)

最后rdd的分区数量就等于predicates.length。

四、通过load获取

Spark还提供通过load的方式来读取数据。

sqlContext.read.format( "jdbc" ).options(
     "dbtable" -> "iteblog" )).load()

  options函数支持url、driver、dbtable、partitionColumn、lowerBound、upperBound以及numPartitions选项,细心的同学肯定发现这个和方法二的参数一致。是的,其内部实现原理部分和方法二大体一致。同时load方法还支持json、orc等数据源的读取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值