基于matlab多运动目标跟踪监测算法实现

此示例演示如何在MATLAB中使用高斯混合模型背景减法、卡尔曼滤波器等技术,对视频中的移动物体进行检测和基于运动的跟踪。详细介绍了创建系统对象、初始化轨道、检测对象、预测轨道、分配检测、更新轨道、删除丢失的轨道以及显示跟踪结果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于matlab多运动目标跟踪监测算法实现

一、前言

此示例演示如何对来自固定摄像机的视频中的移动对象执行自动检测和基于运动的跟踪。

二、介绍

移动物体检测和基于运动的跟踪是许多计算机视觉应用的重要组成部分,包括活动识别、交通监控和汽车安全。基于运动的对象跟踪问题可以分为两部分:

  1. 检测每帧中的移动物体
  2. 关联一段时间内对应于同一对象的检测

运动物体的检测使用基于高斯混合模型的背景减法算法。形态学操作应用于生成的前景掩模以消除噪声。最后,斑点分析检测连接的像素组,这些像素组可能对应于移动对象。

检测与同一对象的关联仅基于运动。每条轨道的运动由卡尔曼滤波器估计。过滤器用于预测轨迹在每个帧中的位置,并确定将每个检测分配给每个轨迹的可能性。

轨道维护成为此示例的一个重要方面。在任何给定帧中,可以将某些检测分配给轨道,而其他检测和轨道可能保持未分配状态。分配的轨迹使用相应的检测进行更新。未分配的轨道标记为不可见。未分配的检测将开始新跟踪。

每个轨道都会记录连续帧数,其中它保持未分配状态。如果计数超过指定的阈值,该示例假定对象离开了视野,并删除了轨迹。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值