Dijkstra(最短路)(模板)

Dijkstra

时间复杂度对比

Dijkstra: O(N^2);

Dijkstra + 优先队列优化 : O (2 * E + V * logV)

SPFA: O(k * E),k 为每个节点进入队列的次数,一般小于2,最坏 O(V * E);

BellmanFord:O(V * E), 可检测负权。

Floyd:O(n^3),j计算每个节点到节点的最短路。

结论

1)单源最短路 ,没有权值为负的边 用Dijkstra(可用堆优化);

2)求每个顶点到每个顶点的最短路,用Floyd

3)权值有负时,但是没有负圈,用SPFA,但是SPFA能检测负圈,但是不能输出负圈,

4)权值有负时,可能有负圈,用BellmanFord,能检测并输出负圈。

5)SPFA检测负环,当存在一个点入队大于V次时,有负环。

单源最短路(边不能为负)

伪代码

Dijkstra(G, d[], s){
	初始化
	for(循环n次){
		u = 使d[u]最小的还未别访问的顶点的标号;
		记 u 已经被访问;
		for(从u出发能到达的所有顶点){
			if(v未被访问 && 以u中介点使s到顶点v的最短距离d[v]更优){
				优化d[v]; 
			} 
		} 
	}  
}

1)邻接矩阵

const int MAXV = 1000;
const int INF = 0x3f3f3f3f;

int n, G[MAXV][MAXV];
int d[MAXV];
bool vis[MAXV] = {false};
void Dijkstra(int s){
	fill(d, d + MAXV, INF);
	d[s] = 0;
	for(int i = 0; i < n; i++){
		int u = -1, MIN = INF;
		for(int j = 0; j < n; j ++){
			if(vis[j] == false && d[j] < MIN){
				u = j;
				MIN = d[j];
			}
		}
		if(u == -1) return ;
		vis[u] = true;
		for(int v = 0; v < n; v++){
			if(vis[v] == false && G[u][v] != INF && d[u] + G[u][v] < d[v]){
				d[v] = d[u] + G[u][v];
			}
		}
	}
}

2)邻接表

struct Node{
	int v, dis;
};
vector<Node> Adj[MAXV];
int n;
int d[MAXV];
bool vis[MAXV] = {false};
void Dijkstra(int s){
	fill(d, d + MAXV, INF);
	d[s] = 0;
	for(int i = 0; i < n; i ++){
		int u = -1, MIN = INF;
		for(int j = 0; j < n; j++){
			if(vis[j] == false && d[j] < MIN){
				u = j;
				MIN = d[j];		
			} 
		}
		if(u == -1) return ;
		vis[u] = true;
		for(int j = 0; j < Adj[u].size(); j ++){
			int v = Adj[u][j].v;
			if(vis[v] == false && d[u] + Adj[u][j].dis < d[v]){
				d[v] = d[u] + Adj[u][j].dis;
			}
		}
	}
} 

3)优先队列优化

#include<iostream>
#include<bits/stdc++.h> 
using namespace std;
typedef long long ll;
typedef pair<int, ll> pii;	//first 是 点, second 是距离 
const int N = 1e5 + 10;
const ll INF = (ll) 1e16;

vector<pii> V[N];
int n, m;
bool vis[N];
ll dis[N];

struct Node{
	int id;
	ll d;
	Node(){}
	Node(int id, ll d): id(id), d(d){}
	bool operator < (const Node &A)const{
		return d > A.d;
	}
};
void Dijkstra(int st){
	for(int i = 1; i <= n; i++){
		vis[i] = 0;
		dis[i] = INF;
	}
	dis[st] = 0;
	priority_queue<Node> Q;
	Q.push(Node(st, 0));	//先把第一个点入队 
	while(!Q.empty()){
		Node nd = Q.top(); Q.pop();	//每次都用优先队列队首(找到边最短的点)以这个点更新 
		if(vis[nd.id]) continue;	//如果已经用这个点更新过就跳过 
		vis[nd.id] = true;			//标记用这个点更新 
		for(int i = 0; i < V[nd.id].size(); i++){	//以这个点更新 
			int k = V[nd.id][i].first;		//与这个点相连的点 
			int len = V[nd.id][i].second;	//距离 
			if(nd.d + len < dis[k] && !vis[k]){	//距离变小,且没有以这个点更新过 
				dis[k] = nd.d + len;		//更新距离 
				Q.push(Node(k, dis[k]));	//入队 
			}
		}
	}
} 
int main (){
	int x, y, z, st, ed, cas = 0;
	scanf("%d", &cas);
	while(cas--){
		scanf("%d%d%d", &n, &m, &st);
		for(int i = 0; i <= n; i++)	V[i].clear();
		while(m --){
			scanf("%d%d%d", &x, &y, &z);
			V[x].push_back(make_pair(y, z));
			//V[y].push_back(make_pair(x, z)); 
		}
		Dijkstra(st);
		for(int i = 1; i <= n; i++)
			if(i == 1) printf("%d", dis[i]);
			else printf(" %d", dis[i]);
	}
	return 0;
} 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值