最短路-Dijkstra

本文介绍了Dijkstra算法如何计算图中一个节点到所有其他节点的最短路径,强调了该算法适用于边权重为正的有向或无向图。通过逐步将已求得最短路径的节点加入集合S,不断更新未处理节点的最短距离,最终得到全图的最短路径。算法的时间复杂度在优先队列实现下可以优化到O(m*logn)。
摘要由CSDN通过智能技术生成

Dijkstra用于计算某一结点到其他所有节点的最短路
适用于边权为正的有向图或者无向图
将图中点分为两部分,一部分是已经求出最短路的点S,一部分是未求出最短路的点U,开始时S={0}, U={剩下的点}, 用d[i]表示点i到点0的距离,从U中找到d[i]最小的点m, 加入S中, 更新U中与m相连的点的d[i](松弛操作),直到图中所有的点都加入S中。

memset(vis, 0 sizeof(vis));//vis数组标记点是否被访问过
memset(d, 0x3f, sizeof(d));
d[0] = 0;
for(int i=0; i<n; i++)
{
    int x, m = INF;
    for(int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值