判断是否是二叉排序树(三种方法)

文章讲述了如何通过先序序列反序列化构建二叉树,并利用中序遍历(递归和非递归)、树型动态规划方法判断该树是否为二叉排序树。给出了三种不同的实现方式:递归中序、非递归中序和树型DP。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7-1 判断是否是二叉排序树

据带虚结点的先序序列建立二叉树,然后判断其是否为二叉排序树。

** 输入格式:**

测试数据有多组,处理到文件尾。每组测试数据在一行中输入一个数字字符串(不含0且长度不超过20),表示二叉树的先序遍历序列,其中字符*表示虚结点(对应的子树为空)。

** 输出格式:**

对于每组测试,输出是否二叉排序树的判定结果,是输出YES,否则输出NO

输入样例:

56**87***
54**87***

** 输出样例:**

NO
YES

解题思路:

先通过先序序列的反序列化,得到整个树,再通过中序遍历或者树型dp的方式判断是否是搜索二叉树

树的结构

struct TreeNode
{
    int val;
    TreeNode* right;
    TreeNode* left;
    TreeNode():val(0),right(nullptr),left(nullptr){}
    TreeNode(int x):val(x),right(nullptr),left(nullptr){}
    TreeNode(int x,TreeNode* left,TreeNode* right ):val(x),left(left),right(right){}
};

先序序列的反序列化

TreeNode* PreOrderDeSerialize(string& s)
{
    if (s.empty())
        return nullptr;
    if (s[0] == '*')
    {
        s = s.substr(1);
        return nullptr;
    }
    TreeNode* node = new TreeNode(s[0]-'0');
    s = s.substr(1);
    node->left = PreOrderDeSerialize(s);
    node->right = PreOrderDeSerialize(s);
    return node;
}

法一:利用中序遍历(递归)

搜索二叉树的中序遍历是有序的,故可以通过中序遍历来判断是否是搜索二叉树

代码如下

//利用中序遍历(递归)进行搜索二叉树的判断
int preValue=-1;
bool checkBST(TreeNode* head){
    if(head==nullptr){
        return true;
    }
    bool isLeftBst= checkBST(head->left);//判断左子树是不是搜索二叉树 
    //在中序遍历中,这个地方是打印行为,这里就变成处理比较行为
    if(!isLeftBst){
        return false;
    }
    if(head->val<=preValue){ //如果值降序,说明不是搜索二叉树
        return false;
    }
    else{
        preValue=head->val; //记录当前结点的值
    }
    return checkBST(head->right); //判断右子树是不是搜索二叉树
}

法二:利用中序遍历(非递归)

利用栈来记录数据,弹出数据判断是否是有序

代码如下:

//利用中序遍历(非递归)进行搜索二叉树的判断
bool checkBST2(TreeNode* head){
    if(head==nullptr){
        return true;
    }
    stack<TreeNode*> stk;
    int  preValue=-1;
    while (!stk.empty()||head!=nullptr)
    {
        if(head!=nullptr){ //一直找左孩子,直到为空
            stk.push(head);
            head=head->left;  
        }
        else{  //为空后,弹出结点,打印,然后找右孩子
            head=stk.top();
            stk.pop();
            if(head->val<=preValue){//在中序遍历中,这个地方是打印行为,这里就变成处理比较行为
                return false;
            }
            else{
                preValue=head->val;
            }
            head=head->right;
        }

    }
    return true;
}

法三:利用树型dp

树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上。整体的思路大致就是用树形的结构存储数据。
这道题可以用树型dp的思想,建立一个返回类型,返回是否是搜索二叉树,整棵树的最大值最小值,通过这些数据来判断是否是搜索二叉树

代码如下:

//利用树型dp(动态规划)判断搜索二叉树
class ReturnData{ //定义一个返回数据类,返回三个数据,对左子树需要最大值,对右子树需要最小值,取全集
    public:
        bool isBST;
        int Min;
        int Max;
        ReturnData(bool is,int mi, int ma){
            isBST= is;
            Min= mi;
            Max=ma;
        }
};
ReturnData* process1(TreeNode* x){
    if(x==nullptr){
        return nullptr; //必须这么返回,因为你不管怎么设最大最小都有干扰
    }
    ReturnData* leftData=process1(x->left); //得到左子树的数据
    ReturnData* rightData=process1(x->right); //得到右子树的数据
    //找x的最小,最大
    int Min=x->val;
    int Max=x->val;
    if(leftData!=nullptr){
        Min=min(Min,leftData->Min);
        Max=max(Max,leftData->Max);
    }
    if(rightData!=nullptr){
        Min=min(Min,rightData->Min);
        Max=max(Max,rightData->Max);
    }
    //判断是否是搜索二叉树
    bool isBST=true;
    if(leftData!=nullptr&&(!leftData->isBST||leftData->Max>=x->val)){
        isBST=false;
    }
    if(rightData!=nullptr&&(!rightData->isBST||rightData->Min<=x->val)){
        isBST=false;
    }
    return new ReturnData(isBST,Min,Max);
}
bool checkBST3(TreeNode* head){
    return process1(head)->isBST;
}

完整代码:

#include<iostream>
#include<string>
#include<stack>
using namespace std;
struct TreeNode
{
    int val;
    TreeNode* right;
    TreeNode* left;
    TreeNode():val(0),right(nullptr),left(nullptr){}
    TreeNode(int x):val(x),right(nullptr),left(nullptr){}
    TreeNode(int x,TreeNode* left,TreeNode* right ):val(x),left(left),right(right){}
};
//利用中序遍历(递归)进行搜索二叉树的判断
int preValue=-1;
bool checkBST1(TreeNode* head){
    if(head==nullptr){
        return true;
    }
    bool isLeftBst= checkBST(head->left);//判断左子树是不是搜索二叉树 
    //在中序遍历中,这个地方是打印行为,这里就变成处理比较行为
    if(!isLeftBst){
        return false;
    }
    if(head->val<=preValue){ //如果值降序,说明不是搜索二叉树
        return false;
    }
    else{
        preValue=head->val; //记录当前结点的值
    }
    return checkBST(head->right); //判断右子树是不是搜索二叉树
}
//利用中序遍历(非递归)进行搜索二叉树的判断
bool checkBST2(TreeNode* head){
    if(head==nullptr){
        return true;
    }
    stack<TreeNode*> stk;
    int  preValue=-1;
    while (!stk.empty()||head!=nullptr)
    {
        if(head!=nullptr){ //一直找左孩子,直到为空
            stk.push(head);
            head=head->left;  
        }
        else{  //为空后,弹出结点,打印,然后找右孩子
            head=stk.top();
            stk.pop();
            if(head->val<=preValue){//在中序遍历中,这个地方是打印行为,这里就变成处理比较行为
                return false;
            }
            else{
                preValue=head->val;
            }
            head=head->right;
        }

    }
    return true;
}
TreeNode* PreOrderDeSerialize(string& s)
{
    if (s.empty())
        return nullptr;
    if (s[0] == '*')
    {
        s = s.substr(1);
        return nullptr;
    }
    TreeNode* node = new TreeNode(s[0]-'0');
    s = s.substr(1);
    node->left = PreOrderDeSerialize(s);
    node->right = PreOrderDeSerialize(s);
    return node;
}
//利用树型dp(动态规划)判断搜索二叉树
class ReturnData{ //定义一个返回数据类,返回三个数据,对左子树需要最大值,对右子树需要最小值,取全集
    public:
        bool isBST;
        int Min;
        int Max;
        ReturnData(bool is,int mi, int ma){
            isBST= is;
            Min= mi;
            Max=ma;
        }
};
ReturnData* process1(TreeNode* x){
    if(x==nullptr){
        return nullptr; //必须这么返回,因为你不管怎么设最大最小都有干扰
    }
    ReturnData* leftData=process1(x->left); //得到左子树的数据
    ReturnData* rightData=process1(x->right); //得到右子树的数据
    //找x的最小,最大
    int Min=x->val;
    int Max=x->val;
    if(leftData!=nullptr){
        Min=min(Min,leftData->Min);
        Max=max(Max,leftData->Max);
    }
    if(rightData!=nullptr){
        Min=min(Min,rightData->Min);
        Max=max(Max,rightData->Max);
    }
    //判断是否是搜索二叉树
    bool isBST=true;
    if(leftData!=nullptr&&(!leftData->isBST||leftData->Max>=x->val)){
        isBST=false;
    }
    if(rightData!=nullptr&&(!rightData->isBST||rightData->Min<=x->val)){
        isBST=false;
    }
    return new ReturnData(isBST,Min,Max);
}
bool checkBST3(TreeNode* head){
    return process1(head)->isBST;
}

int main(){
    string s;
    while (cin>>s)
    {
        
        if(s.empty()){
            break;
        }
        TreeNode* head=PreOrderDeSerialize(s);
        

        if(checkBST3(head)){ //用不同方法将checkBST换成对应的函数即可
            cout<<"YES"<<endl;
        }
        else{
            cout<<"NO"<<endl;
        }
       //preValue=-1; //使用方法一时注意每次循环将preValue重置
    }
    
    
    
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Haru_Yuki

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值