Segment 快速乘(二进制模拟乘)类似于快速

Segment

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1600    Accepted Submission(s): 594


Problem Description
     Silen August does not like to talk with others.She like to find some interesting problems.

     Today she finds an interesting problem.She finds a segment  x+y=q .The segment intersect the axis and produce a delta.She links some line between  (0,0)  and the node on the segment whose coordinate are integers.

     Please calculate how many nodes are in the delta and not on the segments,output answer mod P.
 

Input
     First line has a number,T,means testcase number.

     Then,each line has two integers q,P.

    q  is a prime number,and  2q1018,1P1018,1T10.
 

Output
     Output 1 number to each testcase,answer mod P.
 

Sample Input
  
  
1 2 107
 

Sample Output
  
  
0
 

Source
 

Recommend

wange2014



根据题意,是让我们求该直线与第一象限构成的三角形区域中,坐标全为整数点的个数且不包括所连直线的整数点个数,坐标轴上的不算。那么我们可以用区域内的整数点减去所有边上的整数点,就是我们的答案。
1.首先我们求出三角形区域内的整数点,不包括斜边上的点的总个数是,1+2+......+q-2=(q-1)*(q-2)/2.
2.然后我们求出(0,0)与斜边上各整数点的连线上整数点的个数。而(0,0)到(x0,y0)所构成的直线上(除去(x0,y0)外),整数点的个数为gcd(x0,y0)-1.
下面证明一下这个结论...(0,0)到(x0,y0)这条直线方程为y=y0/x0 * x。上下同除以gcd(x0,y0)为,y = (y0/gcd)/(x0/gcd)*x..那么肯定(y0/gcd)与(x0/gcd)是互质的,则y想为整数,则x必须为x0/gcd的整数倍,x范围为0-x0,那么这个区间内的x0/gcd倍数个数为x0/(x0/gcd)=gcd,除去端点(x0,y0),所以为gcd(x0,y0)-1。。。。因此可以推广到一般的情况为(x0,y0)到(x1,y1)构成的直线上,整数点的个数为gcd(x1-x0,y1-y0).


所以我们求出gcd(x0,y0)-1即可,又因为x0+y0=q,且gcd(a,b)=gcd(a,a-b)(a>b)。。所以gcd(x0,y0)=gcd(x0,p-x0)=gcd(x0,p);  p为质数,,那么gcd(x0,p)只可能是p的倍数或者为1,,又因为x,y是小于p的,,,(x+y=p嘛),,所以gcd(x0,p)=gcd(x0,y0)=1.。。。则gcd(x0,y0)-1=0,那么其它直线上是没有整数点的。因此最终的结果就是(q-1)*(q-2)/2.。。


3。注意坑,,q的范围很大,,,(q-1)*(q-2)已经超过long long 了,所以要用到大数知识,,一是用Java的大数类解决,二是用二进制模拟大数乘法得到。。


AC代码:

#include<cstdio>
#include<cstring>   
#include<algorithm>
#include<iostream>
#define maxn 55
using namespace std;
typedef long long ll;

ll f(ll a, ll b, ll mod) {
	ll ans = 0;
	while(b) {
		if(b & 1) 
			ans = (ans + a) % mod;
		a = (a + a) % mod;
		b >>= 1;
	}
	return ans;
}

int main()
{
	int t;
	scanf("%d",&t);
	while(t--) {
		ll a, b, ans, q, p;
		scanf("%lld%lld",&q,&p); 
		a = (q-1);
		b = q - 2;    //这个地方需要判断q的奇偶性,因为要保证 /2 为准确值  
		if(q & 1)  a /= 2;  //q为奇数,则a为偶数,所以除以2可以整除 
		else  b /= 2;
		ans = f(a, b, p);
		printf("%lld\n",ans);
	}
	return 0; 
} 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
C语言二进制文件存储指的是使用C语言编写的程序的执行文件或者数据文件以二进制形式存储在计算机中。 在C语言中,源代码被编译成二进制机器码,这些机器码表示计算机执行指令的序列。编译器将这些指令生成为一个二进制文件,可以在操作系统上直接执行。二进制文件包含着程序的所有二进制代码,可以直接加载到内存中运行。 二进制文件的存储格式通常是特定于操作系统的,例如Windows下的可执行文件格式是PE格式,而Linux下的可执行文件格式是ELF格式。这些格式包括了二进制代码的布局、入口点地址和各个节(segment)的信息。节是二进制文件中的一部分,它包含了程序的代码、数据和其他信息。 除了可执行文件,C语言还可以生成二进制数据文件。这些数据文件可以包含各种类型的数据,例如图片、音频、视频、数据库等。数据文件的格式通常取决于其内容的特性和使用方法。 在C语言中,开发者可以通过文件操作函数来读写二进制文件。例如,使用fopen函数可以打开一个二进制文件,使用fwrite函数可以将数据写入到文件中,使用fread函数可以从文件中读取数据。这些函数可以根据需要以二进制形式读写数据,而不关心其内容的具体格式。 总而言之,C语言的二进制文件存储是将源代码编译成机器码,并以特定的格式存储在计算机中的一种方式。这种存储方式可以用于生成可执行文件,也可以用于存储各种类型的二进制数据。通过文件操作函数,开发者可以方便地对二进制文件进行读写操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值