转自:http://tr0217.blog.163.com/blog/static/3606648020099302135503/
第一种:剔除2 3 4 5 6 … … 的倍数
在i从2开始的增一变化过程中,剔除i的倍数即j*i(j是大于等于2的自然数,j的上限是问题规模M)
为了减少重复步骤,可以每当i递增到等于第一个没有被剔除的(素)数时再剔除该数的倍数,
重复上述过程至i到达问题规模m的平方根+1
需要说明的三个问题:
假设循环到第n个数,如果该数没有被剔除,那么该数不能是前边所有数的倍数,该数更不可能是后边数的倍数,该
数就是素数。
如果该数是合数却没被剔除,那么该数能分解为两个小于该数的数的积的形式,而前边剔除的数包含了所有小于该
数的数之间的积,这是矛盾的。
为什么筛选循环的第一层只循环至问题规模m的平方根+1
因为,对于一个数m,所有大于该数平方根的数的积已经大于该数了,再剔除下去只是多余。
为什么筛选循环的第二层只循环至MAX/i?
因为此时j*MAX/i就等于MAX,此时需要标记为错误的数已经到了问题的规模即MAX,没有必要在标记比MAX大的值不
是素数,此外用来标记i*j不是素数的数组只有MAX+1的容量,这样做是向不是自己申请的内存空间里写数据,是危
险的。
<span style="font-size:13px;">#include <iostream>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAX=1000;
int main()
{
int i=0,j=0,n=sqrt(MAX)+1;
int a[MAX+1]={0};
for(i=2;i<=n;i++) //筛选循环
for(j=2;j<=MAX/i;j++)
a[j*i]=1;
for(i=2;i<=MAX;i++)
if(a[i]==0)
{
cout.width(7);
cout<<i<<" ";
}
system("pause");
return 0;
}
</span>
用a[i*j]来标记i*j不是素数,这一个相对来说比较容易想到
再来看看下一个(第二种,稍作了优化)
<span style="font-size:13px;">#include<stdio.h>
#include<math.h>
#define MAX_P 500
int nList[MAX_P] = {0};
void Calc()
{
int n,p,t,sq=(int)sqrt(MAX_P*2+1);
for (n=3;n<=sq;n+=2)
{
if (nList[n>>1]) continue;
for (t=n*n;t<=MAX_P<<1;t+=n<<1) //筛选循环
nList[t>>1] = 1;
}
printf("%5d", 2);
for (n=t=1;t<MAX_P;++t)
{
if (nList[t]) continue;
printf("%5d", (t<<1)+1);
if (++n==10)
{
printf("\n");
n=0;
}
}
}
int main(void)
{
Calc();
getchar();
return 0;
}</span>
这个程序的方法是通过排除3 5 7 9 11 … …中的素数n的奇数倍来排除素数的
用数组nList中的第[t/2]个元素的值(取1)来标记t不是素数。
1、为什么是奇数的倍数?
首先我们假设这个算法是正确的。由于素数除了2都是奇数,那么每次送入筛选循环的n值都是奇数,排除t时t的递
增表达式可写为
for(int i=0;i
<span style="font-size:13px;">#define MAX_N 1000
int a[MAX_N+1];
int p[MAX_N+1];
int nCount=0;
void Init(int n) //线性筛法,不过在小范围上(约n<1e7)不比上一个方法快
{
for (int i=2;i<=n;i++)
{
if (a[i]==0)
{
p[++nCount]=i;
}
for (int j=1,k; (j<=nCount) && (k=i*p[j])<=n; j++) //筛选循环
{
a[k] = 1 ;
if (i%p[j] == 0) break;
}
}
}
#include <iostream>
int main(void)
{
Init(MAX_N);
for(int n=1; p[n]>1; ++n)
{
printf("%5d", p[n]);
}
return 0;
}</span>
这一种可以说是对前种算法的直接变形
用a[k]=1来标记k不是素数
第一种是用筛选出来的正确的数(即素数)的倍数剔除合数
第二种是用2到n乘筛选出正确的数,即素数
如果你不以为然,我可以把for (n=3;n<=sq;n+=2)该为(n=3;n