题目直达 ——> 最大食物链计数
一开始以为是 并查集 当我写了一半才发现是要一整条链, 所以就想到了 拓扑排序 😦
Before anything else:
什么是拓扑排序?
那么咱就来说一下对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
简单来讲这个拓扑排序就是说明一个图是一个有向无环图,因此可以得到一个性质那就是,至少存在两个点满足:其中一个点的入度为0(起点),一个点的出度为0(终点)
那么这个题目的思路是什么呢
首先来存一手图 —— 我使用的是 ---- 链式前向星
inline void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
如果要带权图的话加上一个 w[idx] =weight
即可
Next is the Ideas:
- 首先 我们将所有点的 入度(in)和出度(out)存下来
因为这个题求的是 食物链的条数,所以在初始化的时候就要对起点加1因为它本身也是一个食物链 因此可以得到如下代码
for (int i = 1; i <= n; ++i)
if(in[i] == 0) q.push(i), f[i] = 1;
- 接下来就是重头戏了
我们把每次遍历到的点 都加上前一次 点的路径来表示 有多少个路径可以到达当前这个点
我认为这个人是很好理解的 比如 有20条路可以从长沙到岳阳 然后有 30条路可以从岳阳到北京,所以就有 50条路可以从长沙到北京(这应该没有任何问题吧)
所以我们每次遍历到一个点后就进行如下操作(j
点为所遍历到的点)
f[j] += f[t]; //得到到达 j点的路径总和
f[j] %= mod;
in[j]--; // 入度-- 表示这个点已经被遍历过了一次,防止无法脱离循环
- 那么如何确定答案呢?
我们可以通过确定当前点的出入以及入度来确定是否更新答案
- 如果当前的入度为零则代表这个点已经无法被遍历 因为能走到这个点的方法已经走完了
- 如果此时这个点的出度也为零的话就代表这个点就是终点,此时我们就要记录答案了
最后这个操作的代码如下
if(in[j] == 0)
{
if(out[j] == 0){
ans += f[j];
ans %= mod;
}
q.push(j);//如果这个点不是终点,就放入队列中作为起点(因为他的入度为0)
}
At last:
The AC Code is:
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 5050, M = 500050;
static int mod = 80112002;
int h[N], e[M], ne[M], idx;
int out[N], in[N];
int f[N], ans;
queue<int> q;
inline void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
int search()
{
while(q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
f[j] += f[t];
f[j] %= mod;
in[j]--;
if(in[j] == 0)
{
if(out[j] == 0){
ans += f[j];
ans %= mod;
}
q.push(j);
}
}
}
return ans;
}
int main()
{
int n, m;
int u, v;
memset(h, -1, sizeof h);
scanf("%d%d",&n, &m);
for (int i = 0; i < m; ++i)
{
scanf("%d%d",&u, &v);
out[u]++;
in[v]++;
add(u, v);
}
for (int i = 1; i <= n; ++i)
if(in[i] == 0) q.push(i), f[i] = 1;
cout << search();
return 0;
}