洛谷P4017 最大食物链计数 --- 拓扑排序

本文介绍了如何使用拓扑排序解决一道关于寻找最大食物链数量的问题。作者首先解释了拓扑排序的概念,即对有向无环图进行排序,使得任意有向边指向的顶点出现在其起点之前。接着,详细阐述了算法思路,包括存储图的链式前向星结构、计算各节点的入度和出度,以及如何通过队列进行遍历。在遍历过程中,更新路径总数并判断终点以得出答案。最后给出了完整的AC代码实现。
摘要由CSDN通过智能技术生成
题目直达 ——> 最大食物链计数

一开始以为是 并查集 当我写了一半才发现是要一整条链, 所以就想到了 拓扑排序 😦

Before anything else:

什么是拓扑排序?
那么咱就来说一下

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

简单来讲这个拓扑排序就是说明一个图是一个有向无环图,因此可以得到一个性质那就是,至少存在两个点满足:其中一个点的入度为0(起点),一个点的出度为0(终点)

那么这个题目的思路是什么呢
首先来存一手图 —— 我使用的是 ---- 链式前向星

inline void add(int a, int b)
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

如果要带权图的话加上一个 w[idx] =weight即可

Next is the Ideas:

  1. 首先 我们将所有点的 入度(in)和出度(out)存下来

因为这个题求的是 食物链的条数,所以在初始化的时候就要对起点加1因为它本身也是一个食物链 因此可以得到如下代码

for (int i = 1; i <= n; ++i)
		if(in[i] == 0) q.push(i), f[i] = 1;
  1. 接下来就是重头戏了

我们把每次遍历到的点 都加上前一次 点的路径来表示 有多少个路径可以到达当前这个点

我认为这个人是很好理解的 比如 有20条路可以从长沙到岳阳 然后有 30条路可以从岳阳到北京,所以就有 50条路可以从长沙到北京(这应该没有任何问题吧)
所以我们每次遍历到一个点后就进行如下操作(j点为所遍历到的点)

f[j] += f[t]; //得到到达 j点的路径总和
f[j] %= mod;
in[j]--; // 入度-- 表示这个点已经被遍历过了一次,防止无法脱离循环
  1. 那么如何确定答案呢?

我们可以通过确定当前点的出入以及入度来确定是否更新答案

  • 如果当前的入度为零则代表这个点已经无法被遍历 因为能走到这个点的方法已经走完了
  • 如果此时这个点的出度也为零的话就代表这个点就是终点,此时我们就要记录答案了

最后这个操作的代码如下

if(in[j] == 0)
	{
		if(out[j] == 0){
		ans += f[j];
		ans %= mod;
	}
	q.push(j);//如果这个点不是终点,就放入队列中作为起点(因为他的入度为0)
}

At last:
The AC Code is:

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;
const int N = 5050, M = 500050;
static int mod = 80112002;
int h[N], e[M], ne[M], idx;
int out[N], in[N];
int f[N], ans;
queue<int> q;

inline void add(int a, int b)
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

int search()
{
	while(q.size())
	{
		int t = q.front();
		q.pop();
		for (int i = h[t]; i != -1; i = ne[i])
		{
			int j = e[i];
			f[j] += f[t];
			f[j] %= mod;
			in[j]--;
			if(in[j] == 0)
			{
				if(out[j] == 0){
					ans += f[j];
					ans %= mod;
				}
				q.push(j);
			}
		}
	}
	return ans;
}

int main()
{
	int n, m;
	int u, v;
	memset(h, -1, sizeof h);
	scanf("%d%d",&n, &m);
	for (int i = 0; i < m; ++i)
	{
		
		scanf("%d%d",&u, &v);
		out[u]++;
		in[v]++;
		add(u, v);
	}
	for (int i = 1; i <= n; ++i)
		if(in[i] == 0) q.push(i), f[i] = 1;
	
	cout << search();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

He_xj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值