高精度数
-
A + B
位数是 1 0 6 10^6 106 -
A - B
位数是 1 0 6 10^6 106 -
A * a
l e n ( A ) < = 1 0 6 len(A) <= 10^6 len(A)<=106 a < = 1 0 9 a<=10^9 a<=109 -
A / a
大整数的存储
将大整数的每一位存到数组中
数组下标小的存低位 (高位的进位在最后)
模拟人工加法的过程
最后补上进位
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e6 + 10;
// C = A + B
// 倒着表示的
vector<int> add(vector<int> &A, vector<int> &B)
{
vector<int> C; // 存放结果
int t = 0; // 表示进位
for(int i = 0; i < A.size() || i < B.size(); i++)
{
if(i < A.size()) t += A[i];
if(i < B.size()) t += B[i];
C.push_back(t % 10);
t /= 10;
}
if(t)
C.push_back(t);
return C;
}
int main()
{
string a, b;
vector<int> A, B;
cin >> a >> b;
// 转化存储
for(int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
for(int i = b.size() -1; i >= 0; i--)
B.push_back(b[i] - '0');
vector<int> C = add(A, B);
// 输出
for(int i = C.size() - 1; i >= 0; i--)
printf("%d", C[i]);
return 0;
}
减法
不够减的话就向前一位借位
t 表示借位
分为两种情况
A_i - B_i -t >=0 A_i-B_i -t (不需要借位)
<0 A_i-B_i+10-t (需要借位)
假定 A >= B
如果小于的话先用大的减去小的再加上一个负号
一定不会出现负数的情况,有借位t =1,否则 t = 0
#include <iostream>
#include <vector>
using namespace std;
// 判断是否有 A >= B
bool cmp(vector<int> &A, vector<int> &B)
{
// 先判断位数
if(A.size() != B.size())
return A.size() > B.size();
// 诸位比较。高位开始
for(int i = A.size() - 1; i >= 0; i--)
if(A[i] != B[i])
return A[i] > B[i];
return true;
}
// C = A - B A >= B
// 倒着表示的
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C; // 存放结果
int t = 0; // 表示借位
for(int i = 0; i < A.size(); i++)
{
t = A[i] - t;
if(i < B.size()) t -= B[i]; // 只有存在时才需要减掉
C.push_back((t+10) % 10);
if(t < 0) t = 1;
else t = 0;
}
// 去除前导0
while(C.size() > 1 && C.back() == 0) C.pop_back(); // 数为0情况,至少为
return C;
}
int main()
{
string a, b;
vector<int> A, B;
cin >> a >> b;
// 转化存储
for(int i = a.size() - 1; i >= 0; i--)
A.push_back(a[i] - '0');
for(int i = b.size() - 1; i >= 0; i--)
B.push_back(b[i] - '0');
vector<int> C = sub (A, B);
if(cmp(A, B))
{
auto C = sub(A, B);
// 输出
for(int i = C.size() - 1; i >= 0; i--)
printf("%d", C[i]);
}
else
{
auto C = sub(B, A);
// 输出
printf("-");
for(int i = C.size() - 1; i >= 0; i--)
printf("%d", C[i]);
}
return 0;
}
高精度乘法
这一位的结果是 A*10%10
,进位的结果是 A*10/10
将 b
看成是一个整体,
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
int t = 0; // 进位
for(int i = 0; i < A.size() || t; i++) // 或者t不为0情况
{
if(i < A.size())
t += A[i] * b;
C.push_back(t % 10);
t /= 10; // 进位
}
// 去除前导0
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
auto c = mul(A, b);
for(int i = c.size() - 1; i >= 0; i--) printf("%d", c[i]);
return 0;
}
除法
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 商是 c,余数是 r
vector<int> div(vector<int> &A, int b, int &r)
{
vector<int> C;
r = 0;
// 从高位开始
for(int i = A.size() - 1; i >= 0; i--)
{
r = r * 10 + A[i];
C.push_back(r / b);
r %= b;
}
reverse(C.begin(), C.end());
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
int r;
auto c = div(A, b, r);
for(int i = c.size() - 1; i >= 0; i--) printf("%d", c[i]);
cout << endl << r << endl;
return 0;
}