1003 Inversion(ST算法)
需要统计的区间最大值次数是 O(nlog(n)) 级别的。
时间复杂度 O(nlog(n))。
优秀的多个O(log(n))的做法也是可以卡过的。
这里介绍一下优雅的暴力做法。将A数组按值从大到小排序,对于每个下标i暴力找到最大的不被i整除的数。
时间复杂度
O(nlog(n))。
#include <bits/stdc++.h>
using namespace std;
int f[100005][20],n;
inline void init(int n){
int len = (int)(log(double(n))/log(2.0));
for(int j=1;j<=len;j++){
for(int i=1;i<=n;i++){
if(i+(1<<j)-1<=n){
f[i][j] = max(f[i][j-1],f[i + (1<<(j-1))][j-1]);
}
}
}
}
inline int query(int l,int r){
if(l>n) return 0;
if(r>n) r=n;
int len = (int)( log((double)(r-l+1))/log(2.0) );
return max(f[l][len],f[r-(1<<len)+1][len]);
}
int main(){
int T;
cin>>T;
while(T--){
memset(f,0,sizeof f);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&f[i][0]);
init(n);
for(int i=2;i<=n;i++){
int mx = query(1,i-1);
for(int j=i;j<=n;j+=i)
mx = max(mx,query(j+1,j+i-1));
if(i==n) printf("%d\n",mx);
else printf("%d ",mx);
}
}
return 0;
}
1008 Kirinriki
标题提示我们回文串。
两个不重合的子串向中心一起延长会形成奇偶长度两种合串。
枚举一下中心向外延伸,如果和超过了阈值弹掉中心处的位置。双指针维护。
时间复杂度O(n2)
另解:
枚举[1,i],[j,n]用同样方法往内缩。
时间复杂度O(n2)
#include <cmath>#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 5050;
char st[N];
int main(){
//freopen("in.txt", "r", stdin);
int _;
scanf("%d", &_);
for (int m; _--;){
scanf("%d\n", &m);
scanf("%s", st);
int n = strlen(st);
int ans = 0;
for (int mid = 1; mid < n; mid++){
int s = 1, dis = 0;
for (int t = 1; mid + t < n && mid - t >= 0; t++){
dis += abs(st[mid-t] - st[mid+t]);
for (; dis > m;) {
//s++;
dis -= abs(st[mid-s] - st[mid+s]);
s++;
}
ans = max(ans, t - s + 1);
}
s = 1, dis = 0;
for (int t = 1; mid + t - 1 < n && mid - t >= 0; t++){
dis += abs(st[mid+t-1] - st[mid-t]);
for (; dis > m;){
//s++;
dis -= abs(st[mid+s-1] - st[mid-s]);
s++;
}
ans = max(ans, t - s + 1);
}
}
printf("%d\n", ans);
}
return 0;
}
1011 Classes
签到题。
唯一的trick是要判一下Venn图上每个部分不小于0。
#include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <cmath> #include <map> #include <vector> #include <cctype> #include <set> using namespace std; const int INF = 2147483640; const double eps = 1e-7; typedef long long ll; const int maxn = 50000 + 100; int A, B, C, D, E, F, G, N; int main() { int i, j, k, u, n, m; while(scanf("%d", &n) != EOF) { for(m = 1; m <= n; m++) { scanf("%d", &N); int Max = 0; for(i = 1; i <= N; i++) { int res; scanf("%d %d %d %d %d %d %d", &A, &B, &C, &D, &E, &F, &G); int x = A - D - F + G; int y = B - D - E + G; int z = C - E - F + G; int w = D - G; int h = E - G; int k = F - G; int n = G; if(x < 0 || y < 0 || z < 0 || w < 0 || h < 0 || k < 0 || n < 0) res = 0; else res = x + y + z + w + h + k + n; Max = max(res, Max); } printf("%d\n", Max); } } return 0;
}