GOBO: Quantizing Attention-Based NLP Modelsfor Low Latency and Energy Efficient Inference

GOBO

这篇文章提出一种针对BERT的量化方法,该方法可以将BERT的99.9% 的权重压缩到3bit。相比较其它的方法量化后不需要再微调或者是重新训练。

同时给出一种针对该量化方法的存储压缩机制,减少了推理延迟和能耗。该存储压缩机制具有很好的兼容性,可以用于TPU、Eyeriss、或者类似Tensor cores等单元。

最后是展现了一个硬件协同设计架构,该架构即使在计算的时候也将绝大多数权值维持在3bit。该架构有如下优点:

  • 将绝大多数乘累加转换为加法
  • 处理单元的效率高,单位面积可以封装更多计算能力
  • 通过加大片上的存储容量减小片下的流量

量化设计方案

Gausian Group 和 Outlier Group

对于绝大多数DNN而言,人们发现其权值符合高斯分布,对于BERT而言也不例外。下图是BERT-Base某些层的权值分布。明显可以看出是符合高斯分布的。纵坐标是归一化了之后的权值,横坐标是权值出现的频次。
在这里插入图片描述
该文章还有一幅着色图来表示某一层的权值分布,横坐标一个单位表示一个权值,纵坐标表示该权值的大小。而某一点的颜色深浅表示该点由正态分布概率密度公式:
在这里插入图片描述
所计算出来的值。μσ 是该层权值的均值和标准差。可以看出来这一层的权值只有一小部分,也就是颜色较深的部分的值与其它权值相差较大。作者就将这一小部分的权值认为是Outlier Group,其余的权值划分到Gausian Group。
在这里插入图片描述
具体的计算方法是对某一层的权值求均值和方差,得出上述的正态分布概率密度公式,工事中x的值就是权值的大小,将计算出来的结果取对数,最终结果小于等于 -4 的被分入Outlier Group,而其它的归于Gausian Group。

本文所提出的离群值的检测方法的优点就是相比于其它的检测方法,将离群值的检测数量降低了一个数量级,outlier-aware quantization这种方法检测出的离群值是3%,本文是0.1%,可以将更多的数据量化,减小模型占用空间。

Gausian Group的量化

对于每一层Outlier Group的值,本文的思想是原样存储,对于Gausian Group的值则量化到3b。
首先需说明本文提出的量化方法的粒度是层,即每一个layer是用算法独自量化。并不是将BERT模型所有权值一起量化。
量化的具体思想很简单,算法如下:
在这里插入图片描述
简要的描述就是:

  • 将Gausian Group进行排序,然后分成8个bin,每个bin的权值数量是一样的
  • 计算每个bin的均值(centroid)
  • 假如第一个bin有一个权值A,该权值A与第一个bin的centroid的L1距离大于这个权值A与第二个bin的centroid的L1距离,则将该权值A 从第一个bin移动到第二个bin,更新每个bin的centriod,继续迭代。
  • 迭代的终止条件是每个bin的权值和centriod的L1距离之和达到最小值
  • 最后得出的8个centroid就代表这一层的Gausian Group量化结果

对于更新后的8个bin,每个bin里面的权值量化后的结果就是这个bin的centriod。将8个centroid存储为字典,则每个权值只要存储对应的字典索引。

该算法的优点是相比线性划分算法和K-Means算法效率高,对于3b的量化只需要7个迭代就可收敛,是K-Means算法的9x,进行量化之后不需要对模型重新训练或者微调精度损失。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。1

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. 注脚的解释 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值