GOBO: Quantizing Attention-Based NLP Modelsfor Low Latency and Energy Efficient Inference
GOBO
这篇文章提出一种针对BERT的量化方法,该方法可以将BERT的99.9% 的权重压缩到3bit。相比较其它的方法量化后不需要再微调或者是重新训练。
同时给出一种针对该量化方法的存储压缩机制,减少了推理延迟和能耗。该存储压缩机制具有很好的兼容性,可以用于TPU、Eyeriss、或者类似Tensor cores等单元。
最后是展现了一个硬件协同设计架构,该架构即使在计算的时候也将绝大多数权值维持在3bit。该架构有如下优点:
- 将绝大多数乘累加转换为加法
- 处理单元的效率高,单位面积可以封装更多计算能力
- 通过加大片上的存储容量减小片下的流量
量化设计方案
Gausian Group 和 Outlier Group
对于绝大多数DNN而言,人们发现其权值符合高斯分布,对于BERT而言也不例外。下图是BERT-Base某些层的权值分布。明显可以看出是符合高斯分布的。纵坐标是归一化了之后的权值,横坐标是权值出现的频次。
该文章还有一幅着色图来表示某一层的权值分布,横坐标一个单位表示一个权值,纵坐标表示该权值的大小。而某一点的颜色深浅表示该点由正态分布概率密度公式:
所计算出来的值。μ 和 σ 是该层权值的均值和标准差。可以看出来这一层的权值只有一小部分,也就是颜色较深的部分的值与其它权值相差较大。作者就将这一小部分的权值认为是Outlier Group,其余的权值划分到Gausian Group。
具体的计算方法是对某一层的权值求均值和方差,得出上述的正态分布概率密度公式,工事中x的值就是权值的大小,将计算出来的结果取对数,最终结果小于等于 -4 的被分入Outlier Group,而其它的归于Gausian Group。
本文所提出的离群值的检测方法的优点就是相比于其它的检测方法,将离群值的检测数量降低了一个数量级,outlier-aware quantization这种方法检测出的离群值是3%,本文是0.1%,可以将更多的数据量化,减小模型占用空间。
Gausian Group的量化
对于每一层Outlier Group的值,本文的思想是原样存储,对于Gausian Group的值则量化到3b。
首先需说明本文提出的量化方法的粒度是层,即每一个layer是用算法独自量化。并不是将BERT模型所有权值一起量化。
量化的具体思想很简单,算法如下:
简要的描述就是:
- 将Gausian Group进行排序,然后分成8个bin,每个bin的权值数量是一样的
- 计算每个bin的均值(centroid)
- 假如第一个bin有一个权值A,该权值A与第一个bin的centroid的L1距离大于这个权值A与第二个bin的centroid的L1距离,则将该权值A 从第一个bin移动到第二个bin,更新每个bin的centriod,继续迭代。
- 迭代的终止条件是每个bin的权值和centriod的L1距离之和达到最小值
- 最后得出的8个centroid就代表这一层的Gausian Group量化结果
对于更新后的8个bin,每个bin里面的权值量化后的结果就是这个bin的centriod。将8个centroid存储为字典,则每个权值只要存储对应的字典索引。
该算法的优点是相比线性划分算法和K-Means算法效率高,对于3b的量化只需要7个迭代就可收敛,是K-Means算法的9x,进行量化之后不需要对模型重新训练或者微调精度损失。
功能快捷键
撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G
合理的创建标题,有助于目录的生成
直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC
语法后生成一个完美的目录。
如何改变文本的样式
强调文本 强调文本
加粗文本 加粗文本
标记文本
删除文本
引用文本
H2O is是液体。
210 运算结果是 1024.
插入链接与图片
链接: link.
图片:
带尺寸的图片:
居中的图片:
居中并且带尺寸的图片:
当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。
如何插入一段漂亮的代码片
去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片
.
// An highlighted block
var foo = 'bar';
生成一个适合你的列表
- 项目
- 项目
- 项目
- 项目
- 项目1
- 项目2
- 项目3
- 计划任务
- 完成任务
创建一个表格
一个简单的表格是这么创建的:
项目 | Value |
---|---|
电脑 | $1600 |
手机 | $12 |
导管 | $1 |
设定内容居中、居左、居右
使用:---------:
居中
使用:----------
居左
使用----------:
居右
第一列 | 第二列 | 第三列 |
---|---|---|
第一列文本居中 | 第二列文本居右 | 第三列文本居左 |
SmartyPants
SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:
TYPE | ASCII | HTML |
---|---|---|
Single backticks | 'Isn't this fun?' | ‘Isn’t this fun?’ |
Quotes | "Isn't this fun?" | “Isn’t this fun?” |
Dashes | -- is en-dash, --- is em-dash | – is en-dash, — is em-dash |
创建一个自定义列表
-
Markdown
- Text-to- HTML conversion tool Authors
- John
- Luke
如何创建一个注脚
一个具有注脚的文本。1
注释也是必不可少的
Markdown将文本转换为 HTML。
KaTeX数学公式
您可以使用渲染LaTeX数学表达式 KaTeX:
Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过欧拉积分
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.
你可以找到更多关于的信息 LaTeX 数学表达式here.
新的甘特图功能,丰富你的文章
- 关于 甘特图 语法,参考 这儿,
UML 图表
可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:
这将产生一个流程图。:
- 关于 Mermaid 语法,参考 这儿,
FLowchart流程图
我们依旧会支持flowchart的流程图:
- 关于 Flowchart流程图 语法,参考 这儿.
导出与导入
导出
如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。
导入
如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。
注脚的解释 ↩︎