CCF认证 2017-03 地铁修建(最短路变形)

题目
试题编号: 201703-4 
试题名称: 地铁修建 
时间限制: 1.0s 
内存限制: 256.0MB 
问题描述: 
问题描述 
  A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁。 
  地铁由很多段隧道组成,每段隧道连接两个交通枢纽。经过勘探,有m段隧道作为候选,两个交通枢纽之间最多只有一条候选的隧道,没有隧道两端连接着同一个交通枢纽。 
  现在有n家隧道施工的公司,每段候选的隧道只能由一个公司施工,每家公司施工需要的天数一致。而每家公司最多只能修建一条候选隧道。所有公司同时开始施工。 
  作为项目负责人,你获得了候选隧道的信息,现在你可以按自己的想法选择一部分隧道进行施工,请问修建整条地铁最少需要多少天。 
输入格式 
  输入的第一行包含两个整数n, m,用一个空格分隔,分别表示交通枢纽的数量和候选隧道的数量。 
  第2行到第m+1行,每行包含三个整数a, b, c,表示枢纽a和枢纽b之间可以修建一条隧道,需要的时间为c天。 
输出格式 
  输出一个整数,修建整条地铁线路最少需要的天数。 
样例输入 
6 6 
1 2 4 
2 3 4 
3 6 7 
1 4 2 
4 5 5 
5 6 6 
样例输出 

样例说明 
  可以修建的线路有两种。 
  第一种经过的枢纽依次为1, 2, 3, 6,所需要的时间分别是4, 4, 7,则整条地铁线需要7天修完; 
  第二种经过的枢纽依次为1, 4, 5, 6,所需要的时间分别是2, 5, 6,则整条地铁线需要6天修完。 
  第二种方案所用的天数更少。 
评测用例规模与约定 
  对于20%的评测用例,1 ≤ n ≤ 10,1 ≤ m ≤ 20; 
  对于40%的评测用例,1 ≤ n ≤ 100,1 ≤ m ≤ 1000; 
  对于60%的评测用例,1 ≤ n ≤ 1000,1 ≤ m ≤ 10000,1 ≤ c ≤ 1000; 
  对于80%的评测用例,1 ≤ n ≤ 10000,1 ≤ m ≤ 100000; 
  对于100%的评测用例,1 ≤ n ≤ 100000,1 ≤ m ≤ 200000,1 ≤ a, b ≤ n,1 ≤ c ≤ 1000000。

  所有评测用例保证在所有候选隧道都修通时1号枢纽可以通过隧道到达其他所有枢纽。

思路:由于n个交通枢纽,n家公司可以同时施工,所以可以不用考虑公司数量,只考虑如何让1和n连通并让通路的最长边最短即可。 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
const int N=1e5+10;
struct edge
{
	int to;
	int dist;
	edge(int a,int b)
	{
		to=a;
		dist=b;
	}
};
vector<edge> g[N];
int vis[N];
int n,m;
int main()
{
	int a,b,c;
	scanf("%d%d",&n,&m);
	for(int i=0;i<m;i++)
	{
		scanf("%d%d%d",&a,&b,&c);
		g[a].push_back(edge(b,c));
		g[b].push_back(edge(a,c));
	}
	memset(vis,-1,sizeof(vis));
	queue<int> q;
	q.push(1);
	vis[1]=0;
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		int l=g[u].size();
		for(int i=0;i<l;i++)
		{
			if(vis[g[u][i].to]==-1||vis[g[u][i].to]>max(vis[u],g[u][i].dist))
			{
				vis[g[u][i].to]=max(vis[u],g[u][i].dist);
				q.push(g[u][i].to);
			}
		}
	}
	printf("%d\n",vis[n]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值