天梯地图 (最短路)

7-2 天梯地图 (30 分)

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:

输入在第一行给出两个正整数N(2 ≤ N ≤ 500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

V1 V2 one-way length time

其中V1V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:

首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

Time = T: 起点 => 节点1 => ... => 终点

然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

Distance = D: 起点 => 节点1 => ... => 终点

如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

Time = T; Distance = D: 起点 => 节点1 => ... => 终点
#include <bits/stdc++.h>
using namespace std;
const int maxn = 501;
const int inf = 0x3f3f3f3f;
int mpt[maxn][maxn],mpl[maxn][maxn],cnt[maxn];
int N,M,S,D;
int num[maxn],cntt,cntl;
int patht[maxn],pathl[maxn],vis[maxn],dis[maxn],path[maxn],tim[maxn];
void Dijkstra()
{
    memset(vis,0,sizeof vis);
    memset(cnt,0,sizeof maxn);
    memset(dis,inf,sizeof inf);
    memset(path,-1,sizeof -1);
    for(int i = 0; i < N ; i++)
    {
        cnt[i] = 2;
        dis[i] = mpl[S][i];
        path[i] = S;
    }
    cnt[S] = 1;
    vis[S] = 1;
    dis[S] = 0;
    path[S] = -1;
    for(int i = 0; i < N ; i++)
    {
        int minn = inf;
        int minnum = -1 ;
        for(int j = 0; j < N; j++)
        {
            if(!vis[j] && dis[j] < minn)
            {
                minn = dis[j];
                minnum  = j;
            }
            else if(!vis[j] && dis[j] == minn && minnum != -1)
            {
                if(cnt[minnum] > cnt[j])
                {
                    minnum = j;
                }
            }
        }
        if(minnum == -1) break;
        vis[minnum] = 1;
        for(int j = 0; j < N; j++)
        {
            if(!vis[j] && dis[j] > dis[minnum] + mpl[minnum][j])
            {
                path[j] = minnum;
                cnt[j] = cnt[minnum] + 1;
                dis[j] = dis[minnum] + mpl[minnum][j];
            }
            else if(!vis[j] && dis[j] == dis[minnum] + mpl[minnum][j])
            {
                if( cnt[j] > cnt[minnum] + 1)
                {
                    cnt[j] = cnt[minnum] + 1 ;
                    path[j] = minnum;
                }
            }
        }
    }
}
void ShortestTime()
{
    memset(vis,0,sizeof vis);
    memset(dis,inf,sizeof dis);
    memset(path,-1,sizeof path);
    memset(tim,inf,sizeof tim);
    for(int i = 0; i < N; i++)
    {
        dis[i] = mpl[S][i];
        tim[i] = mpt[S][i];
        path[i] = S;
    }
    vis[S] = 1;
    dis[S] = tim[S] = 0;
    path[S] = -1;
    for(int i = 0; i < N ; i++)
    {
        int minn = inf;
        int minnum = -1 ;
        for(int j = 0; j < N; j++)
        {
            if(!vis[j] && tim[j] < minn)
            {
                minn = tim[j];
                minnum  = j;
            }
            else if(!vis[j] && tim[j] == minn && minnum != -1)
            {
                if(dis[minnum] > dis[j])
                {
                    minnum = j;
                }
            }
        }
        if(minnum == -1) break;
        vis[minnum] = 1;
        for(int j = 0; j < N; j++)
        {
            if(!vis[j] && tim[j] > tim[minnum] + mpt[minnum][j])
            {
                path[j] = minnum;
                tim[j] = tim[minnum] + mpt[minnum][j];
                dis[j] = dis[minnum] + mpl[minnum][j];
            }
            else if(!vis[j] && tim[j] == tim[minnum] + mpt[minnum][j])
            {
                if( dis[j] > dis[minnum] + mpl[minnum][j])
                {
                    dis[j] = dis[minnum] + mpl[minnum][j];
                    path[j] = minnum;
                }
            }
        }
    }
}

int main()
{
    cntl = cntt = 0;
    memset(mpt,inf,sizeof mpt);
    memset(mpl,inf,sizeof mpl);
    for(int i = 0; i < maxn ; i++)
    {
        mpt[i][i] = mpl[i][i];

    }
    int st,ed,cost,status,time,len;
    cin>>N>>M;
    for(int i = 0; i< M ; i++)
    {
        cin>>st>>ed>>status>>len>>time;
        mpt[st][ed] = time;
        mpl[st][ed] = len;
        if(!status)
        {
            mpt[ed][st] = time;
            mpl[ed][st] = len;
        }
    }
    cin>>S>>D;
    ShortestTime();
    int p = D;
    while(p != -1)
    {
        patht[cntt++] = p;
        p = path[p];
    }
    Dijkstra();
    p = D;
    while(p != -1)
    {
        pathl[cntl++] = p;
        p = path[p];
    }
    int flag = 1;
    if(cntl == cntt)
    {
        for(int i = 0; i < cntl ; i++)
        {
            if(pathl[i] != patht[i])
            {
                flag = 0;
                break;
            }
        }
    }
    else flag = 0;
    if(flag)
    {
        printf("Time = %d; Distance = %d: ", tim[D], dis[D]);
        printf("%d", pathl[cntl-1]);
        for(int i = cntl - 2; i>=0 ;i--)
        {
             printf(" => %d", pathl[i]);
        }
        cout<<endl;
    }
    else
    {
        printf("Time = %d: ", tim[D]);
        printf("%d", patht[cntt-1]);
        for(int i = cntt - 2; i >= 0; i--)
            printf(" => %d", patht[i]);
        printf("\n");
        printf("Distance = %d: ", dis[D]);
        printf("%d", pathl[cntl-1]);
        for(int i = cntl - 2; i >= 0; i--)
            printf(" => %d", pathl[i]);
        printf("\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值