7-2 天梯地图 (30 分)
本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。
输入格式:
输入在第一行给出两个正整数N
(2 ≤ N
≤ 500)和M
,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M
行,每行按如下格式给出一条道路的信息:
V1 V2 one-way length time
其中V1
和V2
是道路的两个端点的编号(从0到N
-1);如果该道路是从V1
到V2
的单行线,则one-way
为1,否则为0;length
是道路的长度;time
是通过该路所需要的时间。最后给出一对起点和终点的编号。
输出格式:
首先按下列格式输出最快到达的时间T
和用节点编号表示的路线:
Time = T: 起点 => 节点1 => ... => 终点
然后在下一行按下列格式输出最短距离D
和用节点编号表示的路线:
Distance = D: 起点 => 节点1 => ... => 终点
如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。
如果这两条路线是完全一样的,则按下列格式输出:
Time = T; Distance = D: 起点 => 节点1 => ... => 终点
#include <bits/stdc++.h>
using namespace std;
const int maxn = 501;
const int inf = 0x3f3f3f3f;
int mpt[maxn][maxn],mpl[maxn][maxn],cnt[maxn];
int N,M,S,D;
int num[maxn],cntt,cntl;
int patht[maxn],pathl[maxn],vis[maxn],dis[maxn],path[maxn],tim[maxn];
void Dijkstra()
{
memset(vis,0,sizeof vis);
memset(cnt,0,sizeof maxn);
memset(dis,inf,sizeof inf);
memset(path,-1,sizeof -1);
for(int i = 0; i < N ; i++)
{
cnt[i] = 2;
dis[i] = mpl[S][i];
path[i] = S;
}
cnt[S] = 1;
vis[S] = 1;
dis[S] = 0;
path[S] = -1;
for(int i = 0; i < N ; i++)
{
int minn = inf;
int minnum = -1 ;
for(int j = 0; j < N; j++)
{
if(!vis[j] && dis[j] < minn)
{
minn = dis[j];
minnum = j;
}
else if(!vis[j] && dis[j] == minn && minnum != -1)
{
if(cnt[minnum] > cnt[j])
{
minnum = j;
}
}
}
if(minnum == -1) break;
vis[minnum] = 1;
for(int j = 0; j < N; j++)
{
if(!vis[j] && dis[j] > dis[minnum] + mpl[minnum][j])
{
path[j] = minnum;
cnt[j] = cnt[minnum] + 1;
dis[j] = dis[minnum] + mpl[minnum][j];
}
else if(!vis[j] && dis[j] == dis[minnum] + mpl[minnum][j])
{
if( cnt[j] > cnt[minnum] + 1)
{
cnt[j] = cnt[minnum] + 1 ;
path[j] = minnum;
}
}
}
}
}
void ShortestTime()
{
memset(vis,0,sizeof vis);
memset(dis,inf,sizeof dis);
memset(path,-1,sizeof path);
memset(tim,inf,sizeof tim);
for(int i = 0; i < N; i++)
{
dis[i] = mpl[S][i];
tim[i] = mpt[S][i];
path[i] = S;
}
vis[S] = 1;
dis[S] = tim[S] = 0;
path[S] = -1;
for(int i = 0; i < N ; i++)
{
int minn = inf;
int minnum = -1 ;
for(int j = 0; j < N; j++)
{
if(!vis[j] && tim[j] < minn)
{
minn = tim[j];
minnum = j;
}
else if(!vis[j] && tim[j] == minn && minnum != -1)
{
if(dis[minnum] > dis[j])
{
minnum = j;
}
}
}
if(minnum == -1) break;
vis[minnum] = 1;
for(int j = 0; j < N; j++)
{
if(!vis[j] && tim[j] > tim[minnum] + mpt[minnum][j])
{
path[j] = minnum;
tim[j] = tim[minnum] + mpt[minnum][j];
dis[j] = dis[minnum] + mpl[minnum][j];
}
else if(!vis[j] && tim[j] == tim[minnum] + mpt[minnum][j])
{
if( dis[j] > dis[minnum] + mpl[minnum][j])
{
dis[j] = dis[minnum] + mpl[minnum][j];
path[j] = minnum;
}
}
}
}
}
int main()
{
cntl = cntt = 0;
memset(mpt,inf,sizeof mpt);
memset(mpl,inf,sizeof mpl);
for(int i = 0; i < maxn ; i++)
{
mpt[i][i] = mpl[i][i];
}
int st,ed,cost,status,time,len;
cin>>N>>M;
for(int i = 0; i< M ; i++)
{
cin>>st>>ed>>status>>len>>time;
mpt[st][ed] = time;
mpl[st][ed] = len;
if(!status)
{
mpt[ed][st] = time;
mpl[ed][st] = len;
}
}
cin>>S>>D;
ShortestTime();
int p = D;
while(p != -1)
{
patht[cntt++] = p;
p = path[p];
}
Dijkstra();
p = D;
while(p != -1)
{
pathl[cntl++] = p;
p = path[p];
}
int flag = 1;
if(cntl == cntt)
{
for(int i = 0; i < cntl ; i++)
{
if(pathl[i] != patht[i])
{
flag = 0;
break;
}
}
}
else flag = 0;
if(flag)
{
printf("Time = %d; Distance = %d: ", tim[D], dis[D]);
printf("%d", pathl[cntl-1]);
for(int i = cntl - 2; i>=0 ;i--)
{
printf(" => %d", pathl[i]);
}
cout<<endl;
}
else
{
printf("Time = %d: ", tim[D]);
printf("%d", patht[cntt-1]);
for(int i = cntt - 2; i >= 0; i--)
printf(" => %d", patht[i]);
printf("\n");
printf("Distance = %d: ", dis[D]);
printf("%d", pathl[cntl-1]);
for(int i = cntl - 2; i >= 0; i--)
printf(" => %d", pathl[i]);
printf("\n");
}
return 0;
}