Python之pandas,series,可视化

python常用导入函数

from IPython.display import display
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
from PIL import Image  

import matplotlib.pyplot as plt
%matplotlib inline  
              
%config ZMQInteractiveShell.ast_node_interactivity='all'    # nootbook使用
from scipy import interp             # 线性插值

ndarray

np之常用函数创建

np.ones(shape, dtype=None, order=‘C’)
#ones–>创建指定长度或形状全部为1的数组
参数说明:
shape:维度
dtype:数据类型,默认是float
order: 可选规定返回数组元素在内存的存储顺序:看源码两个选项:{‘C’, ‘F’},
C(C语言)-rowmajor;F(Fortran《FormulaTranslation)的缩写,是一种编程语言》)column-major

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ndarray之聚合操作

以三维数组求和为例:
在这里插入图片描述
%config ZMQInteractiveShell.ast_node_interactivity=‘all’
a = np.random.randint(0,10,size = [3,2,3])
a.shape
b = a.min(axis = 0) # 按三维,对应位置比较
c = a.min(axis = 1) # 按两维,行比较
d = a.min(axis = 2) # 按1维,列比较
e = a.min(axis = -1) # 按1维,列比较
display(b,c,d,e)
在这里插入图片描述
其他聚合操作:

 Function Name	NaN-safe Version	Description
    np.sum	np.nansum	Compute sum of elements
    np.prod	np.nanprod	Compute product of elements
    np.mean	np.nanmean	Compute mean of elements
    np.std	np.nanstd	Compute standard deviation
    np.var	np.nanvar	Compute variance
    np.min	np.nanmin	Find minimum value
    np.max	np.nanmax	Find maximum value
    np.argmin	np.nanargmin	Find index of minimum value
    np.argmax	np.nanargmax	Find index of maximum value
    np.median	np.nanmedian	Compute median of elements
    np.percentile	np.nanpercentile	Compute rank-based statistics of elements
    np.any	N/A	Evaluate whether any elements are true
    np.all	N/A	Evaluate whether all elements are true
    np.power 幂运算

pandas

pandas之series

Series的创建

Series是一种类似与一维数组的对象,由下面两个部分组成:

values:一组数据(ndarray类型)
index:相关的数据索引标签
在这里插入图片描述

Series的索引和切片

	import numpy as np
    import pandas as pd
    from pandas import Series,DataFrame
    import matplotlib.pyplot as plt
    %matplotlib inline 
    # %matplotlib inline这一句是IPython的魔法函数,
    # 可以在IPython编译器里直接使用,作用是内嵌画图,省略掉plt.show()这一步,直接显示图像
    
	s = Series(nd,index = ['a','b','c','d','e'])
    # 显示索引
    s[['a','d']]
    s.loc[['a','d']]
    
    # 隐式索引
    s[[0,3]]
    s.iloc[[0,3]]
    
    # 以隐式索引为例,取一段连续的
    s.iloc[[0,1,2,3]]
    
    # 索引如果要取一段连续的值,就要多个索引,
    # 对索引稍加修改,去掉一个中括号,逗号改冒号,引入切片
    # 切片
    
    s['a':'d']#左闭右闭
    s.loc['a':'d']
    s[0:4]
    s.iloc[0:4]#左闭右开

执行结果:
在这里插入图片描述
后四行代码,运用切片方法
在这里插入图片描述

可视化

十分钟掌握Seaborn,进阶Python数据可视化分析:https://zhuanlan.zhihu.com/p/49035741

matlplob官网:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

matlplob中文文档:https://www.matplotlib.org.cn/tutorials/introductory/usage.html

Matplotlib可视化最有价值的 50 个图表http://liyangbit.com/pythonvisualization/matplotlib-top-50-visualizations/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值