1 决策树算法概述
工作原理:
得到原始数据集,然后基于最好的属性值划分数据集,由于特征值可能多余两个,因此可能存在大于两个分支的数据集划分。第一次划分后,数据将被向下传递到树分支的下一个节点,在这个节点上,我们可以再次划分数据。
递归结束的条件:
程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类。如果所有实例具有相同的分类, 则得到一个叶子节点或终止块。任何到达叶子结点的数据必然属于叶子节点的分类。
2 创建分支 createBranch() 的伪代码
检测数据集中的每个子项是否属于同一分类:
If so
return 类标签
Else
寻找划分数据集的最好特征
划分数据集
创建分支节点
for 每个划分的子集
调用 createBranch() 函数并增加返回结果到分支节点中
return 分支节点
3 Wiki——奥卡姆剃刀原理、ID3算法、信息熵与信息增益
(1)奥卡姆剃刀原理
奥卡姆剃刀(英语:Occam’s Razor, Ockham’s Razor),意思是简约之法则。他在《箴言书注》2卷15题说
切勿浪费较多东西,去做‘用较少的东西,同样可以做好的事情’。
换一种说法,如果关于同一个问题有许多种理论,每一种都能作出同样准确的预言,那么应该挑选其中使用假定最少的。尽管越复杂的方法通常能作出越好的预言,但是在不考虑预言能力(即结果大致相同)的情况下,假设越少越好。
(2)ID3算法介绍
ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。
在信息论中,期望信息越小,那么信息增益就越大,从而纯度就越高。ID3算法的核心思想就是以信息增益来度量属性的选择,选择分裂后信息增益最大的属性进行分裂。该算法采用自顶向下的贪婪搜索遍历可能的决策空间。
(3)信息熵(Information entropy)
在信息论中,熵是接收的每条消息中包含的信息的平均量,又被称为香农熵、信息熵、信源熵、平均自信息量。这里,“消息”代表来自分布或数据流中的事件、样本或特征。(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。)
熵越高,混合的信息越多
假如一个随机变量的取值为,每一种取到的概率分别是,那么
的熵定义为
意思是一个变量的变化情况可能越多,那么它携带的信息量就越大。
对于分类系统来说,类别是变量,它的取值是,而每一个类别出现的概率分别是
而这里的就是类别的总数,此时分类系统的熵就可以表示为
(4)信息增益(Information Gain)
信息增益是针对一个一个特征而言的,就是看一个特征,系统有它和没有它时的信息量各是多少,两者
的差值就是这个特征给系统带来的信息量,即信息增益。
接下来以天气预报的例子来说明。下面是描述天气数据表,学习目标是play或者not play。
可以看出,一共14个样例,包括9个正例和5个负例。那么当前信息的熵计算如下
在决策树分类问题中,信息增益就是决策树在进行属性选择划分前和划分后信息的差值。假设利用
属性Outlook来分类,那么如下图
划分后,数据被分为三部分了,那么各个分支的信息熵计算如下
那么划分后的信息熵为
代表在特征属性的条件下样本的条件熵。那么最终得到特征属性带来的信息增益为
信息增益的计算公式如下
其中为全部样本集合,是属性所有取值的集合,是的其中一个属性值,是中属性的
值为的样例集合,为中所含样例数。
在决策树的每一个非叶子结点划分之前,先计算每一个属性所带来的信息增益,选择最大信息增益的属性来划分,因为信息增益越大,区分样本的能力就越强,越具有代表性,很显然这是一种自顶向下的贪心策略。以上就是ID3算法的核心思想。
(5)关于信息增益的深入理解
熵:表示随机变量的不确定性。
条件熵:在一个条件下,随机变量的不确定性。
信息增益:熵 - 条件熵在一个条件下,信息不确定性减少的程度!
通俗地讲,X(明天下雨)是一个随机变量,X的熵可以算出来, Y(明天阴天)也是随机变量,在阴天情况下下雨的信息熵我们如果也知道的话(此处需要知道其联合概率分布或是通过数据估计)即是条件熵。两者相减就是信息增益!
原来明天下雨例如信息熵是2,条件熵是0.01(因为如果是阴天就下雨的概率很大,信息就少了),这样相减后为1.99,在获得阴天这个信息后,下雨信息不确定性减少了1.99!是很多的!所以信息增益大!
也就是说,阴天这个信息对下雨来说是很重要的!所以在特征选择的时候常常用信息增益,如果IG(信息增益大)的话那么这个特征对于分类来说很关键~~ 决策树就是这样来找特征的!
4 决策树的优点与缺点
(1)优点
计算复杂度不高,输出易于理解的结果,对于中间值的缺失不敏感,可以处理不相关特征数据
(2)缺点
可能会产生过度匹配问题
5 Python代码实现
(1)计算香农熵
# 划分数据集的大原则是: 将无序的数据变得更加有序(尽量使信息熵降低)
# 信息增益(information gain): 在划分数据集前后信息熵发生的变化
# 获得 信息增益 最高 的特征就是最好的选择
# 集合信息 的 度量方式称为 香农熵(ShannonEntropy) 或 熵(entropy)
def calcShannonEnt(dataSet):
"""
计算给定数据集的 香农熵
:param dataSet:
:return:
"""
# 计算输入数据集的 样本 总数
numEntries = len(dataSet)
# 创建一个用于统计 标签 出现次数的 dict
labelCounts = {}
# 遍历数据集中的 样本
for featVec in dataSet:
# 当前 样本 的 标签 为 featVec[-1]
currentLabel = featVec[-1]
# 记录标签的出现次数
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
# 香农熵 初始化
shannonEnt = 0.0
# 遍历字典 labelCounts 的 key
for key in labelCounts:
# 计算 标签 出现的 频率
prob = float(labelCounts[key])/numEntries
# 计算 香农熵
shannonEnt -= prob * log(prob, 2)
return shannonEnt
# # 熵越高,则混合的数据越多
# print(calcShannonEnt(myDat))
(2)创建数据集
def createDataSet():
dataSet = [[1, 1, 'yes'],
[1, 1, 'yes'],
[1, 0, 'no'],
[0, 1, 'no'],
[0, 1, 'no']]
labels = ['no surfacing', 'flippers']
return dataSet, labels
myDat, labels = createDataSet()
(3)按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
"""
按照给定的特征划分数据集
遍历数据集中的每一个元素,一旦发现符合要求的值,则将其添加到新创建的列表中
:param dataSet: 待划分