ACW 方格取数 (最长上升子序列模型)

7 篇文章 0 订阅
2 篇文章 0 订阅

在这里插入图片描述
在这里插入图片描述

这一题用到的方法在于,理解成两条路径,f[i1][j1][i2][j2]来表示分别从(1,1)(1,1)走到(i1,j1)(i2, j2)时的最大值,这时候的时间复杂度时O(n4)
进一步可以发现,问题求的是到终点时,需要的最大值,即两条路径终点重合,两条路走的步数是一样的,假设k为走的步数, k = i1 + j1 = i2 + j2,那么原来的四维数组便可以简化成三维f[k][i1][i2],纵坐标分别是k - i1与k - i2。
因为一个点只能拿一次,且只能向下或者向右,除非同时到达一个相同的点,否则一个路径走过的点,另一个路径绝对不会再不同的步数下,再经过这个点。

说的优点繁琐了,假设二维数组中里面的大小为w[i][j],简化来就是,走k步,i1 == i2时, 这时候只需要加一次w[i1][k - i1]即可,如果不同,则还要加上w[i2][k - i2]的值。最后返回的答案就是f[2 * n][n][n]!
这里的第一个维度是横纵坐标相加的值,相当于步数,因为下标都是从1开始,所以k从2开始:
最后每一个k时f的最大值,为到达i1,i2两个点时,两条路径由:向右和向下的两两组合,四种情况的最大值。

#include <iostream>

using namespace  std;
const int N = 15;
int w[N][N];
int f[2 * N][N][N];
int main () {
    int n, a, b, c;
    cin >> n;
    while(cin >> a >> b >> c, a || b || c) w[a][b] = c;
    for (int k = 2; k <= 2 * N; k++) {
        for (int i1 = 1; i1 <= n; i1++) {
            for (int i2 = 1; i2 <= n; i2++) {
                int j1 = k - i1, j2 = k - i2;
                if (j1 >= 1 && j2 >= 1 && j1 <= n && j2 <= n) {
                    int t = w[i1][j1];
                    if (i1 != i2) t += w[i2][j2];
                    int &x = f[k][i1][i2];
                    x = max(x, f[k - 1][i1 - 1][i2 - 1] + t);
                    x = max(x, f[k - 1][i1 - 1][i2] + t);
                    x = max(x, f[k - 1][i1][i2 - 1] + t);
                    x = max(x, f[k - 1][i1][i2] + t);
                }
            }
        }
    }
    cout << f[2 * n][n][n] << endl;
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值