自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 C++_基本语法笔记_仿函数和算法接口

相比可以自定义筛选条件返回:迭代器使用谓词/仿函数内置类型的谓词:自定义类型的谓词:传入类型是Person,查找相邻重复元素二分查找统计数据的个数这种 " if ",都要写仿函数,返回bool值来判断带有的要写谓词谓词:

2024-08-19 22:29:30 423

原创 C++_基本语法笔记_STL容器

push_back是尾插法注意:起始迭代器v.begin指向第一个。v.end指向最后一个的下一个另一种集合:存储对象的地址。这里p->m_Name;*it就是<>里面的类型自定义数据类型,要指定排序规则。

2024-08-15 16:11:50 838

原创 C++_基本语法笔记_模板

思想是Java里的泛型(不确定用什么类型的数据)这里template这一句,意思是声明T是泛型,后面写用到泛型T的函数。建议都用应用场景:不同数据类型的交换函数。

2024-08-14 17:18:35 483

原创 C++_基本语法笔记_继承和多态

思想与Java差不多。

2024-08-13 15:05:22 596

原创 C++_基本语法笔记_类和对象

A->B则A为指针,->是成员提取,A->B是提取A中的成员B,A只能是指向类、结构、联合的指针。让其他特殊函数/类,访问本类的private权限内容,关键字是friend。因为无法确定调用静态函数func时候,所用的m_B是哪个对象的属性,所以。用途2:希望某个函数的返回值,是对象本身,就return *this。同时,静态成员函数也有权限,例如:private权限就不能被类外调用。指向被调用的成员函数所属的对象(是固定,不可修改的)类似于拷贝一个对象,但是现在是将一个对象的值覆盖。

2024-08-08 21:54:47 950

原创 C++_基本语法笔记_函数相关

不能同时使用默认参数(编译器不知道按哪个默认参数,有二义性)

2023-12-05 16:56:37 96

原创 C++_基本语法笔记_存储区_引用

与C语言完全相同的就没必要记录了。

2023-12-04 21:42:25 779

原创 吴恩达深度学习_第四课(4)《人脸识别和风格转换》

人脸验证和人脸识别。

2023-11-14 21:13:04 127

原创 吴恩达深度学习_第四课(3)《目标检测》

softmax函数进行分类操作,判断图片中是否存在行人、汽车和摩托车或是背景对象。除此之外,我们可以让神经网络多输出几个单元,表示一个边界框,即b,b,b,b这四个数字是被检测对象的边界框的参数。算法要做的就是:首先判断图里有没有目标,目标在哪,目标是什么,所以每次输出的y中包含这些参数值。损失函数:当y=1(存在检测目标),计算所有参数的损失函数。否则只计算y的损失值,其他7个参数情况不关心。

2023-11-07 22:12:34 119

原创 吴恩达深度学习_第四课(2)《深度卷积网络:实例探究》

而 Inception网络 的作用就是代替你来决定卷积核的大小,是否要添加池化层…我们可以给网络添加“卷积核个数”这种参数的所有可能值。网络会自己学习需要什么样的参数,采用哪些过滤器组合。卷积的计算成本:使用16个1x1x192的卷积核产生瓶颈层,再用32个5x5x16的卷积核进行卷积,可以有效降低计算成本。

2023-11-01 19:44:36 61

原创 吴恩达深度学习_第四课(1)《深层神经网络》

假如有10个过滤器,每个过滤器有 27 个参数,加上偏置 b,每个过滤器有28个参数,再乘以10个过滤器,共计280个参数。尽量不要自己设置超参数,而是查看文献中别人采用了哪些超参数,选一个在别人任务中效果很好的架构,它也有可能适用于你的应用程序。的结果,使用python的广播机制,给16个数字都加上偏置b,得到这个核的卷积结果。使用两个卷积核,也就是有两个特征,分别卷积出来两个。,全连接层的参数巨大,卷积层需要的参数较少。我们依旧设原图宽x,核宽f,填充p,步长s。,同时提高所提取特征的鲁棒性。

2023-10-23 17:28:33 106

原创 吴恩达深度学习_第三课(2) 机器学习策略

以前有一些数据处理系统或者学习系统,它们需要多个阶段的处理。那么端到端深度学习就是忽略所有这些不同的阶段,用单个神经网络代替它。它需要很多的数据来训练,才可能有好的效果。端到端深度学习系统是可行的,它表现可以很好(例如,机器翻译),也可以简化系统架构,让你不需要搭建那么多手工设计的单独组件,但它并不是每次都能成功(从X射线照片判断年龄)

2023-10-19 20:35:22 80

原创 吴恩达深度学习_第三课(1) 机器学习策略

以上方法都可以改变模型的性能,但是需要判断哪些是有效的,哪些是可以放心舍弃的。

2023-10-12 21:25:05 93

原创 吴恩达深度学习_第二课(3)《超参数调试、Batch正则化和程序框架》

在深度学习领域,常采用在超参数组成的矩阵中,进行参数搜索(试验了更多的不同的超参数值)由粗糙到精细的策略,从最初的范围筛选,然后集中到可能更优的小区域进行更密集的搜索。

2023-10-09 10:20:13 66

原创 吴恩达深度学习_第二课(2)《优化算法》

为了快速训练模型。

2023-09-26 22:24:20 95

原创 吴恩达深度学习_第二课(1)《深度学习实用层面》

有助于提高训练效率。

2023-09-15 15:46:50 100

原创 吴恩达深度学习_第一课(4)《深层神经网络》

本网络层数为4,隐藏层数为3y​。

2023-08-05 20:20:38 113

原创 吴恩达深度学习_第一课(3)《浅层神经网络》

变量上标是圆括号 (1),(2),(3)…(i) 表示的数据:x,x变量上标是方括号[1],[2],[3]…[i] 表示的数据:x,x举个例子:x作为输入进入第一层,配合W和b进行计算,得到第一层结果a;a作为第二层的输入,配合W和b进行计算,得到第二层结果a,并计算本次前向传播的损失函数。类似于单层逻辑回归中的反向传播需要计算dz和da在神经网络中,根据对某层参数w和b的偏导,也有dz,da,dw,db。

2023-07-26 20:42:19 230

原创 吴恩达深度学习_第一课(2)《神经网络基础》

例如分辨一张图片里面到底有没有猫:输出1(有猫) or 输出0(无猫)

2023-07-14 16:32:56 145

原创 吴恩达深度学习_第一课(1)《神经网络和深度学习》

有数据集合/数据列,每个特征都有清晰的定义。计算机能直接读取的数据。:特征可能是像素值/音频/单词。计算机不学习无法读取理解的数据。小写m:训练集/训练样本的数量。

2023-07-08 17:36:13 83

原创 莫烦pytorch学习笔记(三)

分类网络

2022-01-26 21:59:27 1580

原创 莫烦pytorch学习笔记(二)

搭建一个回归问题网络

2022-01-26 01:04:29 2015 1

原创 莫烦pytorch学习笔记(一)

pytorch的基础学习

2022-01-25 11:51:29 1404

原创 B站莫烦Python多线程学习笔记

有C基础的Python学习

2022-01-09 21:42:54 267

原创 B站莫烦Python基础学习笔记

有一定C和Python基础

2022-01-08 20:46:48 352

原创 Python的集合

有C基础的Python学习

2022-01-06 23:45:20 756

原创 Python元组 与 集合

有C基础的Python学习

2022-01-04 23:01:40 354

原创 Python字典

C语言基础的Python学习

2022-01-04 11:08:35 602

原创 Python列表

有C基础的Python学习

2022-01-03 20:21:18 1144

原创 Python逻辑结构

基于C语言学习Python

2022-01-03 10:19:55 708

原创 Python基础运算符

有C基础接触Python

2022-01-02 16:06:06 372

原创 Vue的插槽&作用域插槽

为什么要使用插槽我们先写一个父组件向子组件传标签的代码<body> <div id="root"> <child content='<p>world</p>'></child> </div> <script type="text/javascript"> Vue.component('child',{ props:['content'], template:'<div>

2020-08-09 09:32:32 157

原创 数据结构之线性表3:各种链表

循环链表定义一个首尾相接的链表,单链表最后结点的指针由NULL改为指向头结点或者第一节点。连接两循环链表两个带有头结点的循环链表LA,LB,将两个循环单链表合并成一个循环链表,头指针为LALinkList merge_1(LinkList LA,LinkList LB){ Node *p,*q; p=LA; q=LB; while(p->next!=LA){ p=p->next; //找到LA表尾 } while(q->next!=L

2020-08-09 09:31:16 216

原创 数据结构之线性表2:单链表

线性表相关基础知识详见之前的文章数据结构之线性表1:顺序表 https://blog.csdn.net/qq_45629864/article/details/107889870链表概念以链式结构存储的线性表就是链表存储结构:存储器中位置任意,逻辑上相邻的数据元素在物理上不一定相邻,可能连续可能不连续。存取方式:顺序存取结点分为数据域和指针域数据域:存储元素数值指针域:存储后继结点的位置由若干个结点由指针链组成一个链表头指针指向第一个元素地址,并且由头指针唯一确定,因此单链表可

2020-08-09 09:30:40 239

原创 数据结构之线性表1:顺序表

线性表定义和特点具有相同类型的数据元素的有限序列初始结点有后继无前驱,终端结点有前驱无后继,中间结点,内部结点有且仅有一个直接前驱和一个直接后继。归结为:关系线性化,结点顺序存内存分配函数使用以下函数需要加载头文件<stdlib.h>malloc(m)函数:分配m个字节的地址空间,并返回这段空间的首地址sizeof(x)函数:计算变量x的长度free§:释放指针p所指变量的存储空间,即彻底删除一个变量例如:L.data=(int*)malloc(sizeof(int)*Ma

2020-08-09 09:29:17 320

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除