Datawhale 算法实战第2期 Task 1.2

本次分享聚焦于XGBoost和LightGBM两种模型的实践应用,包括原生接口和sklearn接口的使用,特别关注了数据不平衡处理、特征重要性可视化及正确选择模型类型。同学们在Google Colab上进行了实验,部分同学针对分类问题错误地使用了回归模型,后续将尝试LGBMClassifier进行修正。
摘要由CSDN通过智能技术生成

Task 1.2

XGB和LGB都存在原生接口和sklearn接口,可以查询一些资料,对两种接口都尝试一下代码实现,
002号同学使用google的colab,colab教程入口,并且加入了数据不平衡处理,优秀!
007号同学利用xgboost对特征的重要性做了一个可视化,棒极了!!!

013号同学博客的代码没有颜色 在代码块那里加一个python就好啦
在这里插入图片描述

print()

014号同学,lgb你用的是回归模型,但是这是一个分类问题,你试一下LGBMClassifier能不能解决问题一
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值