目录
一、添加依赖
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<spark.version>3.1.2</spark.version>
<mysql.version>8.0.29</mysql.version>
</properties>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-graphx -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.12</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
<!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
二、配置log4j
src/main/resources/log4j.properties
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Set everything to be logged to the console
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=WARN
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=WARN
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
将log4j-defaults.properties复制到resources下,并重命名为log4j.properties,第19行:log4j.rootCategory=INFO, console 修改为log4j.rootCategory=ERROR, console
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import org.apache.spark.{SparkConf, SparkContext}
object SparkDemo {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkDemo")
val sc :SparkContext= SparkContext.getOrCreate(conf)
// println(sc) // org.apache.spark.SparkContext@63998bf4
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("sparkSessionDemo").getOrCreate()
// println(spark) // org.apache.spark.sql.SparkSession@682c1e93
val rdd: RDD[Int] = sc.parallelize(1 to 10)
rdd.collect().foreach(println)
val pNum: Int = rdd.getNumPartitions
println("分区数量",pNum)// (分区数量,20)
}
}
三、spark提交jar包
[root@lxm147 opt]# spark-submit --class nj.zb.kb21.WordCount --master local[*] ./sparkstu-1.0-SNAPSHOT.jar
(cjdison,1)
(spark,1)
(cdio,1)
(cjiodscn,1)
(hcuediun,1)
(hello,3)
(java,1)
(nodsn,1)
(jcido,1)
(jcndio,1)
(cjidsovn,1)
(world,1)
四、读取文件
(一)加载数据
SparkSQL 默认读取和保存的文件格式为parquetscala> spark.read. csv format jdbc json load option options orc parquet schema table text textFile
如果读取不同格式的数据,可以对不同的数据格式进行设定:
scala> spark.read.format("…")[.option("…")].load("…")
➢ format("…"):指定加载的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和
"textFile"。
➢ load("…"):在"csv"、"jdbc"、"json"、"orc"、"parquet"和"textFile"格式下需要传入加载
数据的路径。
➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable
前面都是使用 read API 先把文件加载到 DataFrame 然后再查询,也可以直接在文件上进行查询: 文件格式.`文件路径`
# 读取本地文件 # 方式一: spark.sql("select * from json.`file:///opt/soft/spark312/data/user.json`").show # 方式二: scala> val df = spark.read.json("file:///opt/soft/spark312/data/user.json") df: org.apache.spark.sql.DataFrame = [age: bigint, username: string] scala> df.show +---+--------+ |age|username| +---+--------+ | 30|zhangsan| | 20| lisi| | 40| wangwu| +---+--------+ # 读取HDFS上的文件 # 方式一: scala> spark.sql("select * from json.`hdfs://lxm147:9000/data/user.json`").show 2023-03-30 16:25:09,132 WARN metastore.ObjectStore: Failed to get database json, returning NoSuchObjectException +---+--------+ |age|username| +---+--------+ | 30|zhangsan| | 20| lisi| | 40| wangwu| +---+--------+ # 方式二: la> spark.read.json("hdfs://lxm147:9000/data/user.json").show +---+--------+ |age|username| +---+--------+ | 30|zhangsan| | 20| lisi| | 40| wangwu| +---+--------+
(二)保存数据
df.write.save 是保存数据的通用方法
scala> df.write. bucketBy formart jdbc mode options parquet save sortBy csv insertInto json option orc partitionBy saveAsTable text
如果保存不同格式的数据,可以对不同的数据格式进行设定
scala>df.write.format("…")[.option("…")].save("…")
➢ format("…"):指定保存的数据类型,包括"csv"、"jdbc"、"json"、"orc"、"parquet"和
"textFile"。
➢ save ("…"):在"csv"、"orc"、"parquet"和"textFile"格式下需要传入保存数据的路径。
➢ option("…"):在"jdbc"格式下需要传入 JDBC 相应参数,url、user、password 和 dbtable
保存操作可以使用 SaveMode, 用来指明如何处理数据,使用 mode()方法来设置。
有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。
SaveMode 是一个枚举类,其中的常量包括:
示例:
1.保存为指定格式文件:
scala> df.write.format("json").save("file:///opt/soft/spark312/data/output1")
如果同一个文件存储两次,会报错文件已存在
scala> df.write.format("json").save("file:///opt/soft/spark312/data/output") scala> df.write.format("json").save("file:///opt/soft/spark312/data/output") org.apache.spark.sql.AnalysisException: path file:/opt/soft/spark312/data/output already exists. at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:122)
2.追加存储文件:append
scala> df.write.format("json").mode("append").save("file:///opt/soft/spark312/data/output")
3.覆盖存储文件:overwrite
scala> df.write.format("json").mode("overwrite").save("file:///opt/soft/spark312/data/output")
4.忽略原文件:ignore
scala> df.write.format("json").mode("ignore").save("file:///opt/soft/spark312/data/output")
1.Parquet
# 读取json文件
scala> spark.read.load("file:///opt/soft/spark312/examples/src/main/resources/users.parquet")
# 将json文件保存为parquet文件
scala> df1.write.mode("append").save("file:///opt/soft/spark312/data/output1")
2.json
# 加载json文件
scala> val df2 = spark.read.json("file:///opt/soft/spark312/data/user.json")
df2: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
# 创建临时表
scala> df2.createOrReplaceTempView("user")
# 数据查询
scala> spark.sql("select * from user where age > 30").show
+---+--------+
|age|username|
+---+--------+
| 40| wangwu|
+---+--------+
3.CSV
# 读取CSV文件
scala> val df = spark.read.format("csv").option("seq",";").option("inferSchema","true").option("header","true").load("file:///opt/soft/spark312/examples/src/main/resources/people.csv")
df: org.apache.spark.sql.DataFrame = [name;age;job: string]
scala> df.show
+------------------+
| name;age;job|
+------------------+
|Jorge;30;Developer|
| Bob;32;Developer|
+------------------+
4.MySql
添加依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.29</version>
</dependency>
package com.atguigu.bigdata.spark.sql
import org.apache.spark.SparkConf
import org.apache.spark.sql._
import java.util.Properties
object Spark04_SparkSQL_JDBC {
def main(args: Array[String]): Unit = {
// TODO 创建SparkSQL的运行环境
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("sparkSQL")
val spark: SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()
import spark.implicits._
// TODO 读取MySql数据
//方式 1:通用的 load 方法读取
spark.read
.format("jdbc")
.option("url", "jdbc:mysql://192.168.180.141:3306/exam")
.option("driver", "com.mysql.cj.jdbc.Driver")
.option("user", "root")
.option("password", "root")
.option("dbtable", "student")
.load()
.show()
//方式 2:通用的 load 方法读取 参数另一种形式
spark.read
.format("jdbc")
.options(Map("url" -> "jdbc:mysql://192.168.180.141:3306/exam?user=root&password=root", "dbtable" -> "student", "driver" -> "com.mysql.cj.jdbc.Driver"))
.load()
.show()
//方式 3:使用 jdbc 方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "root")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://192.168.180.141:3306/exam", "users", props)
df.show()
// TODO 保存MySql数据
df.write
.format("jdbc")
.option("url", "jdbc:mysql://192.168.180.141:3306/exam")
.option("driver", "com.mysql.cj.jdbc.Driver")
.option("user", "root")
.option("password", "root")
.option("dbtable", "student1")
.mode(SaveMode.Append)
.save()
// TODO 关闭环境
spark.stop()
}
}
5.hive on spark
如果想连接外部已经部署好的 Hive,需要通过以下几个步骤:
➢ Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下
cp /opt/soft/hive312/conf/hive-site.xml /opt/soft/spark-local/conf
➢ 把 Mysql 的驱动 copy 到 jars/目录下
cp /opt/soft/hive312/lib/mysql-connector-java-8.0.29.jar /opt/soft/spark-local/jars
➢ 如果访问不到 hdfs,则需要把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下
➢ 重启 spark-shell
scala> spark.sql("show tables").show
returning NoSuchObjectException
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
# 读取本地文件
scala> val df = spark.read.json("file:///opt/soft/spark-local/data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
# 创建临时表
scala> df.createOrReplaceTempView("user")
# 读取临时表
scala> spark.sql("select * from user").show
+---+--------+
|age|username|
+---+--------+
| 30|zhangsan|
| 20| lisi|
| 40| wangwu|
+---+--------+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# 创建表并设定字段
scala> spark.sql("create table atguigu(id int)")
# 读取hdfs上的文件中的数据加载到
scala> spark.sql("load data inpath '/opt/soft/hive312/warehouse/atguigu/id.txt' into table atguigu")
res5: org.apache.spark.sql.DataFrame = []
# 查询默认数据库
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| atguigu| false|
| | user| true|
+--------+---------+-----------+
# 查询表中的数据
scala> spark.sql("select * from atguigu").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+
6.IDEA的Spark中操作Hive
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.1.2</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.12</artifactId>
<version>3.1.2</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.29</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.12</artifactId>
<version>3.1.2</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>3.1.2</version>
</dependency>
</dependencies>