四阶龙格库塔方法求解一次常微分方程组

本文介绍了如何使用四阶龙格库塔方法求解一次常微分方程组,通过Matlab R2019a环境,详细展示了步骤和代码实例,用于模拟x、y、z系统的动态行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、写在前面

龙格库塔方法是数值求解常微分非线性方程的有利工具,计算精度较高,通过缩短步进距离增加阶数可以进一步控制误差范围。工程上较为常用的是四阶龙格库塔算法(R-K4),在计算收敛的情况下往往可以得到比较好的结果。

二、四阶龙格库塔方法

这里简单介绍一下算法的具体实现过程,不做详细的推导。其求解的问题是形如方程:
y ˙ = f ( y , t ) , 其 中 t ∈ [ t 0 , t 1 ] 初 值 y ( t 0 ) = c 0 \dot{y}=f(y,t),其中t\in[t_0,t_1] \\ 初值 y(t_0)=c_0 y˙=f(y,t),t[t0,t1]y(t0)=c0
通过选取一定的步进长度h,来对区间上函数值进行单步迭代求解,最终得到结果。具体计算公式为:
t n + 1 = t n + h k 1 = f ( y n , t n ) k 2 = f ( y n + h 2 k 1 , t n + h 2 ) k 3 = f ( y n + h 2 k 2 , t n + h 2 ) k 4 = f ( y n + h k 3 , t n + h ) y n + 1 = y n + h 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) t_{n+1}=t_n+h\\ k_1=f(y_n,t_n)\\ k_2=f(y_n+\dfrac{h}{2}k_1,t_n+\dfrac{h}{2})\\ k_3=f(y_n+\dfrac{h}{2}k_2,t_n+\dfrac{h}{2})\\ k_4=f(y_n+hk_3,t_n+h)\\ y_{n+1}=y_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4) tn+1=tn+hk1=f(yn,tn)k2=f(yn+2hk1,tn+2h)k3=f(yn+2hk2,tn+2h)k4=f(yn+hk3,tn+h)yn+1=yn+6h(k1+2k2+2k3+k4)
通过以上公式,选取合适的步进长度h,反复迭代,就可求解出y的数值解。

三、使用四阶龙格库塔方法求解一次常微分方程组

  • 使用的环境matlabR2019a
  • 求解的方程
    x ˙ = y + 3 z + s i n ( 5 t ) y ˙ = x + c o s ( t ) z ˙ = x + z − 3 c o s ( 3 t ) s i n ( 4 t ) 其 中 t ∈ [ 0 , 1 ] x ( 0 ) = y ( 0 ) = z ( 0 ) = 1 \dot{x}=y+3z+sin(5t)\\ \dot{y}=x+cos(t)\\ \dot{z}=x+z-3cos(3t)sin(4t)\\ 其中t\in[0,1]\\ x(0)=y(0)=z(0)=1 x˙=y+3z+sin(5t)y˙=x+cos(t)z˙=x+z3cos(3t)sin(4t)t[0,1]x(0)=y(0)=z(0)=1
  • matlab代码
clear;
clc;
close all;

h=1e-5;      %步进长度
t=0:h:1;   %生成自变量t的向量

%%创建计算结果x,y,z的数组
N=length(t);
x=ones(1,N);
y=ones(1,N);
z=ones(1,N);

%%四阶龙格库塔迭代
for i=2:N
    t_n=t(i-1);
    x_n=x(i-1);
    y_n=y(i-1);
    z_n=z(i-1);
    
    kx1=y_n+3*z_n+sin(5*t_n);
    ky1=x_n+cos(t_n);
    kz1=x_n+z_n-3*cos(3*t_n)*sin(4*t_n);
    
    kx2=(y_n+ky1*h/2)+3*(z_n+kz1*h/2)+sin(5*(t_n+h/2));
    ky2=(x_n+kx1*h/2)+cos(t_n+h/2);
    kz2=(x_n+kx1*h/2)+(z_n+kz1*h/2)-3*cos(3*(t_n+h/2))*sin(4*(t_n+h/2));
    
    kx3=(y_n+ky2*h/2)+3*(z_n+kz2*h/2)+sin(5*(t_n+h/2));
    ky3=(x_n+kx2*h/2)+cos(t_n+h/2);
    kz3=(x_n+kx2*h/2)+(z_n+kz2*h/2)-3*cos(3*(t_n+h/2))*sin(4*(t_n+h/2));
    
    kx4=(y_n+ky3*h)+3*(z_n+kz3*h)+sin(5*(t_n+h));
    ky4=(x_n+kx3*h)+cos(t_n+h);
    kz4=(x_n+kx3*h)+(z_n+kz3*h)-3*cos(3*(t_n+h))*sin(4*(t_n+h));
    
    x(i)=x_n+h/6*(kx1+2*kx2+2*kx3+kx4);
    y(i)=y_n+h/6*(ky1+2*ky2+2*ky3+ky4);
    z(i)=z_n+h/6*(kz1+2*kz2+2*kz3+kz4);  
end
%%画图
figure();
hold on;
plot(t,x,'r');
plot(t,y,'g');
plot(t,z,'b');
legend('x','y','z');
xlabel('t');
title('xyz函数图象');
hold off;

  • 最后得到计算结果图象
    在这里插入图片描述
龙格库塔法(Runge-Kutta method)是一种常用的数值方法,用于求解微分方程。它通过离散化微分方程来近似求解,并迭代计算出系统在每个离散时间点上的解。龙格库塔法的基本思想是根据当前的状态和时间步长,通过一系列的计算来估计下一个时间点上的状态。 具体地说,龙格库塔法微分方程表示为一一阶微分方程,然后使用一定的算法来计算每个方程的斜率。根据这些斜率和时间步长,可以计算出下一个时间点上的解。这个过程会不断迭代,直到达到所需的精度或时间点。 关于微信支付和蚂蚁金服在海外的策略,微信支付主要服务于出境游客,为其提供便捷的支付解决方案,而蚂蚁金服则通过入股当地公司、派驻技术团队等方式,在全球范围内构建本土化的移动支付生态圈。这种本土化的策略可以更好地适应各地的市场需求和支付习惯。 然而,微信在进击印度市场时遇到了一些失败,部分原因是产品设计仍然按照中国市场的习惯进行,没有充分考虑印度市场的特点和需求。这个例子提醒我们,在海外拓展业务时,要注重本土化,根据当地市场的特点来设计产品和服务,以提供更好的用户体验和满足当地用户的需求。 综上所述,龙格库塔法是用于求解微分方程的一种数值方法,微信支付和蚂蚁金服在海外采取了不同的策略来扩大业务,而微信在印度市场的失败也提醒我们要注重本土化。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [阿里腾讯进击韩国互联网](https://blog.csdn.net/tangxiaoyin/article/details/91490165)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值