1.13 HBase
1.13.1 HBase存储结构
架构角色:
1)Master
实现类为HMaster,负责监控集群中所有的 RegionServer 实例。主要作用如下:
(1)管理元数据表格hbase:meta,接收用户对表格创建修改删除的命令并执行
(2)监控region是否需要进行负载均衡,故障转移和region的拆分。
通过启动多个后台线程监控实现上述功能:
①LoadBalancer负载均衡器
周期性监控region分布在regionServer上面是否均衡,由参数hbase.balancer.period控制周期时间,默认5分钟。
②CatalogJanitor元数据管理器
定期检查和清理HBase:meta中的数据。meta表内容在进阶中介绍。
③MasterProcWAL Master预写日志处理器
把Master需要执行的任务记录到预写日志WAL中,如果Master宕机,让backupMaster读取日志继续干。
2)Region Server
Region Server实现类为HRegionServer,主要作用如下:
(1)负责数据cell的处理,例如写入数据put,查询数据get等
(2)拆分合并Region的实际执行者,有Master监控,有regionServer执行。
3)Zookeeper
HBase通过Zookeeper来做Master的高可用、记录RegionServer的部署信息、并且存储有meta表的位置信息。
HBase对于数据的读写操作时直接访问Zookeeper的,在2.3版本推出Master Registry模式,客户端可以直接访问Master。使用此功能,会加大对Master的压力,减轻对Zookeeper的压力。
4)HDFS
HDFS为HBase提供最终的底层数据存储服务,同时为HBase提供高容错的支持。
1.13.2 HBase的写流程
写流程:
写流程顺序正如API编写顺序,首先创建HBase的重量级连接
(1)读取本地缓存中的Meta表信息;(第一次启动客户端为空)
(2)向ZK发起读取Meta表所在位置的请求;
(3)ZK正常返回Meta表所在位置;
(4)向Meta表所在位置的RegionServer发起请求读取Meta表信息;
(5)读取到Meta表信息并将其缓存在本地;
(6)向待写入表发起写数据请求;
(7)先写WAL,再写MemStore,并向客户端返回写入数据成功。
1.13.3 HBase的读流程
创建连接同写流程。
(1)读取本地缓存中的Meta表信息;(第一次启动客户端为空)
(2)向ZK发起读取Meta表所在位置的请求;
(3)ZK正常返回Meta表所在位置;
(4)向Meta表所在位置的RegionServer发起请求读取Meta表信息;
(5)读取到Meta表信息并将其缓存在本地;
(6)MemStore、StoreFile、BlockCache
同时构建MemStore与StoreFile的扫描器,
MemStore:正常读
StoreFile:
根据索引确定待读取文件;
再根据BlockCache确定读取文件;
(7)合并多个位置读取到的数据,给用户返回最大版本的数据,如果最大版本数据为删除标记,则不给不返回任何数据。
1.13.4 HBase的刷写策略
(1)Mem store:flush.size 128M
(2)Region:128M * 4
(3)RegionServer:JVM堆内存 * 0.95 * 0.4
(4)定期刷写:默认最后修改时间距离1小时
(5)手动刷写:手动执行Flush命令
1.13.5 Region的切分
(1)0.94之前:固定按10G切。
(2)0.94-2.0:动态变化min(10G,2*128M*R^3), R一个RS中同一张表region的数量。
(3)2.0之后:第一次按照256M切,后面都按照10G切。
1.13.6 HBase的合并
Compaction分为两种,分别是Minor Compaction和Major Compaction。
1.13.7 RowKey设计原则
(1)rowkey长度原则
(2)rowkey散列原则
(3)rowkey唯一原则
1.13.8 RowKey如何设计
1)使用场景:
大量用户信息保存在HBase中。
2)热点问题:
由于用户的id是连续的,批量导入用户数据后,很有可能用户信息都集中在同一个region中。如果用户信息频繁访问,很有可能该region的节点成为热点。
3)期望: 通过对Rowkey的设计,使用户数据能够分散到多个region中。
4)步骤:
(1)预分区
通过命令
create 'GMALL:DIM_USER_INFO','INFO',SPLITS=>['20','40','60','80']
把用户信息表(GMALL:DIM_USER_INFO) 分为5个region : [00-20), [20-40), [40-60), [60-80), [80-99]
(2)写入时反转ID
把用户ID左补零10位(根据最大用户数),然后反转顺序。
比如:用户id为1457,反转处理后变为7541000000; 根据前两位分到region [60-80),
用户id为1459,反转处理后变为9541000000;根据前两位分到 region [80-99]
这样连续的用户ID反转后由于Rowkey开头并不连续,会进入不同的region中。
最终达到的效果可以通过Web UI进行观察:
如上图,用户数据会分散到多个分区中。
注意:在用户查询时,也同样根据需要把ID进行反转后进行查询。
1.13.9 HBase二级索引原理
1)原理
协处理器:协助处理数据,可以在向原始表中写入数据之后向索引表中写入一条索引数据。
2)种类及用法
(1)全局 读多写少
单独创建表专门用于存储索引,索引表数据量比原始表小,读取更快速。但是写操作会写两张表的数据,跨Region,需要多个连接。
(2)本地 写多读少
将索引数据与原表放在一起(Region),加在一起比原表数据量大,读取相对变慢,但是由于在一个Region,所以写操作两条数据用的是同一个连接。