多分类中TP/TN/FP/FN的计算

TP: True Positive
FN: False Negative
FP: False Positive
TN: True Negative

二分类任务中的TP/TN/FP/FN容易理解和求取,但实际中常常需要通过求多分类任务中某类别的TP/TN/FP/FN进而计算其他性能参数,如recall,precision,f1-score,TPR,TNR等等。本文主要讲解TP/TN/FP/FN的计算。

在多分类任务中,各类别的TP/TN/FP/FN计算可由下图概括:
五分类混淆矩阵中类4的TP/TN/FP/FN计算图示

为了方便理解,举个例子说明。
假设某三分类任务的混淆矩阵如下:
三分类任务的混淆矩阵
类别1(记为label1)的TP/TN/FP/FN计算如下图所示:
在这里插入图片描述

label1_TP=9;
label1_TN=6+1+1+7=15;
label1_FP=0+1=1;
label1_FN=3+2=5;

类别2的TP/TN/FP/FN计算下图所示:
在这里插入图片描述

label2_TP=6;
label2_TN=9+2+1+7=19;
label2_FP=3+1=4;
label2_FN=0+1=1;

同理,类别3的TP/TN/FP/FN计算如下:
在这里插入图片描述

label3_TP=7;
label3_TN=9+3+0+6=18;
label3_FP=2+1=3;
label3_FN=1+1=2;

此外,附上python代码方便大家。

import numpy as np

# 1-混淆矩阵
confusion_matrix 
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值