计算二叉树的深度

本文介绍了一种求解二叉树深度的方法,通过递归遍历二叉树的左子树和右子树,找到最长路径的长度即为树的深度。适用于计算机科学和数据结构的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。如果只有一个结点,则树的深度为1。

/*
struct TreeNode {
    int val;
    struct TreeNode *left;
    struct TreeNode *right;
    TreeNode(int x) :
            val(x), left(NULL), right(NULL) {
    }
};*/
class Solution {
public:
    int TreeDepth(TreeNode* pRoot)
    {
        if(pRoot == NULL ) return 0;   //若当前结点为NULL,则返回0
        //当前结点下的二叉树深度等于其左右子树深度的最大值再加上1
        return max(TreeDepth(pRoot->left), TreeDepth(pRoot->right)) + 1;
    }
};

 

### 使用递归算法计算二叉树深度 递归是一种常见的解决数据结构问题的方式,尤其适用于具有天然递归特性的结构,如二叉树。对于二叉树而言,其深度是指从根节点到最远叶节点路径上的边的数量。以下是基于递归实现的两种常见方法: #### 方法一:C语言版本 在C语言中,可以通过定义一个`TreeNode`结构体表示二叉树节点,并编写递归函数来计算二叉树深度。具体实现如下所示[^1]: ```c int calculateDepth(struct TreeNode* root) { if (root == NULL) { // 如果当前节点为空,则返回0 return 0; } else { int leftDepth = calculateDepth(root->left); // 左子树的深度 int rightDepth = calculateDepth(root->right); // 右子树的深度 return (leftDepth > rightDepth) ? (leftDepth + 1) : (rightDepth + 1); } } ``` 此代码片段的核心思想在于将整个二叉树分解成更小的部分——即左子树和右子树分别求解它们的最大深度,最终比较两者的大小并加上当前层的高度得到整棵树的深度。 #### 方法二:伪代码通用形式 另一种表达方式更加抽象化,不局限于某一种编程语言语法细节之上[^2]: ```plaintext function depth(tree): if tree is null then: return 0 else: hl = depth(tree.left_child) // 获取左孩子的高度 hr = depth(tree.right_child) // 获取右孩子的高度 if hl > hr: return hl + 1 else: return hr + 1 ``` 这种方法清晰地展示了递归的基本原理及其终止条件(当遇到空指针时停止进一步深入),同时也强调了如何通过对比左右两侧的结果得出整体结论的过程。 以上就是关于使用递归算法计算二叉树深度的主要介绍内容。值得注意的是,在实际应用当中还需要考虑边界情况以及性能优化等方面因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值