基本定律
求反规则: 1 ‾ = 0 \overline{1} = 0 1=0; 0 ‾ = 1 \overline{0} = 1 0=1
常变量规则: 0 ⋅ A = 0 0 \cdot A = 0 0⋅A=0, 1 ⋅ A = A 1 \cdot A = A 1⋅A=A; 1 + A = 1 1 + A = 1 1+A=1, 0 + A = A 0 + A = A 0+A=A
重叠律: A ⋅ A = A A \cdot A = A A⋅A=A; A + A = A A + A = A A+A=A
互补律: A ⋅ A ‾ = 0 A \cdot \overline{A} = 0 A⋅A=0; A + A ‾ = 1 A + \overline{A} = 1 A+A=1
交换律: A ⋅ B = B ⋅ A A \cdot B = B \cdot A A⋅B=B⋅A; A + B = B + A A + B = B + A A+B=B+A
结合律: A ⋅ ( B ⋅ C ) = ( A ⋅ B ) ⋅ C A \cdot (B \cdot C) = (A \cdot B) \cdot C <