一、完全二叉树简介
一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
一言以蔽之,从左到右依次变满的二叉树就叫做完全二叉树。
参考:百度百科.完全二叉树定义
二、判断方法
如果一棵二叉树同时满足如下①②条件,则这棵树就是完全二叉树!
①、宽度优先遍历该树,遍历每个节点,任何一个节点如果有右孩子但没有左孩子,则直接返回false
②、在 ① 的前提下,如果遇到了第一个左右孩子不双全的情况下,那么接下来遇到的所有节点都必须是叶子节点。
三、判断条件举例说明
条件①、
⑤这个节点左右孩子不双全,他只有右孩子没有左孩子,直接返回false
条件②、
⑤节点是宽度优先遍历到的第一个左右孩子不双全的节点,他有左孩子没右孩子,从该节点起以后的节点必须都是叶子节点,否则他就不是一棵完全二叉树。
三、代码实现
public static boolean isCBT(final TreeNode head) {
if (head == null) {
return true;
}
// 从当前节点开始,后面的节点是否都需要是叶子节点
boolean isLeafNode = false;
final LinkedList<TreeNode> queue = new LinkedList<>();
queue.add(head);
// 宽度优先遍历二叉树
while (!queue.isEmpty()) {
final TreeNode node = queue.poll();
// ①、左孩子为空,右孩子不为空的情况,直接返回false
if (node.right != null && node.left == null) {
return false;
}
// ②、如果后面的节点都应该是叶子节点,但是又有左孩子或右孩子,则直接返回false
if (isLeafNode && (node.left != null || node.right != null)) {
return false;
}
// ③、遇到第一个左右孩子不双全的节点,那么该节点后的所有节点都应该是叶子节点
if (node.left == null || node.right == null) {
isLeafNode = true;
}
// 压入左孩子到队列
if (node.getLeft() != null) {
queue.add(node.left);
}
// 压入右孩子到队列
if (node.getRight() != null) {
queue.add(node.right);
}
}
// 其余情况都返回true
return true;
}