java数据结构与算法之判断是否是完全二叉树

一、完全二叉树简介

一棵深度为k的有n个结点的二叉树,对树中的结点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。

一言以蔽之,从左到右依次变满的二叉树就叫做完全二叉树。

参考:百度百科.完全二叉树定义

二、判断方法

如果一棵二叉树同时满足如下①②条件,则这棵树就是完全二叉树!

①、宽度优先遍历该树,遍历每个节点,任何一个节点如果有右孩子但没有左孩子,则直接返回false

②、在 ① 的前提下,如果遇到了第一个左右孩子不双全的情况下,那么接下来遇到的所有节点都必须是叶子节点。

三、判断条件举例说明

条件①、

⑤这个节点左右孩子不双全,他只有右孩子没有左孩子,直接返回false

在这里插入图片描述

条件②、

⑤节点是宽度优先遍历到的第一个左右孩子不双全的节点,他有左孩子没右孩子,从该节点起以后的节点必须都是叶子节点,否则他就不是一棵完全二叉树。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wf8UYmt0-1620789640472)(algorithm-picture/完全二叉树判断情况2.png)]

三、代码实现

public static boolean isCBT(final TreeNode head) {
    if (head == null) {
        return true;
    }
    // 从当前节点开始,后面的节点是否都需要是叶子节点
    boolean isLeafNode = false;
    final LinkedList<TreeNode> queue = new LinkedList<>();
    queue.add(head);
  	
  	// 宽度优先遍历二叉树
    while (!queue.isEmpty()) {
        final TreeNode node = queue.poll();

        // ①、左孩子为空,右孩子不为空的情况,直接返回false
        if (node.right != null && node.left == null) {
            return false;
        }
      
      	// ②、如果后面的节点都应该是叶子节点,但是又有左孩子或右孩子,则直接返回false
        if (isLeafNode && (node.left != null || node.right != null)) {
            return false;
        }

        // ③、遇到第一个左右孩子不双全的节点,那么该节点后的所有节点都应该是叶子节点
        if (node.left == null || node.right == null) {
            isLeafNode = true;
        }

        // 压入左孩子到队列
        if (node.getLeft() != null) {
            queue.add(node.left);
        }
        // 压入右孩子到队列
        if (node.getRight() != null) {
            queue.add(node.right);
        }
    }
    // 其余情况都返回true
    return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值