【CF260D】Black And White Tree——杨子曰题目

#【CF260D】Black And White Tree——杨子曰题目

The board has got a painted tree graph, consisting of n nodes. Let us remind you that a non-directed graph is called a tree if it is connected and doesn’t contain any cycles.

Each node of the graph is painted black or white in such a manner that there aren’t two nodes of the same color, connected by an edge. Each edge contains its value written on it as a non-negative integer.

A bad boy Vasya came up to the board and wrote number sv near each node v — the sum of values of all edges that are incident to this node. Then Vasya removed the edges and their values from the board.

Your task is to restore the original tree by the node colors and numbers sv.

Input
The first line of the input contains a single integer n (2 ≤ n ≤ 105) — the number of nodes in the tree. Next n lines contain pairs of space-separated integers ci, si (0 ≤ ci ≤ 1, 0 ≤ si ≤ 109), where ci stands for the color of the i-th vertex (0 is for white, 1 is for black), and si represents the sum of values of the edges that are incident to the i-th vertex of the tree that is painted on the board.

Output
Print the description of n - 1 edges of the tree graph. Each description is a group of three integers vi, ui, wi (1 ≤ vi, ui ≤ n, vi ≠ ui, 0 ≤ wi ≤ 109), where vi and ui — are the numbers of the nodes that are connected by the i-th edge, and wi is its value. Note that the following condition must fulfill cvi ≠ cui.

It is guaranteed that for any input data there exists at least one graph that meets these data. If there are multiple solutions, print any of them. You are allowed to print the edges in any order. As you print the numbers, separate them with spaces.

Examples
Input

3
1 3
1 2
0 5

Output

3 1 3
3 2 2

Input

6
1 0
0 3
1 8
0 2
0 3
0 0

Output

2 3 3
5 3 3
4 3 2
1 6 0
2 1 0

杨子来给大家草率地翻译一下:有黑白两种颜色的点,每个点有一个点权,现在你要在他们之间连上一些带权值的边,形成一棵树,使得每个点都满足,连向它的边的边权和等于点权(显然是special judge)


我认为既然是special judge,那我们就可以乱搞了,只要能满足要求就可以
杨子曰:我们在连边的时候要遵循边连的越少越好,因为黑白点的点权和一定相等(要是不相等那还匹配的住吗?),所以不会出现没得连的尴尬处境,即使在场所有点的点权都是0了,也可以把剩下没连的点佛系地练到一个点上就好了呀(special judge我们就可以乱来)
那怎么可以减少连边呢?那些点权少的点我觉得可以一步到位,一条边就搞定,于是我们就有了一个算是贪心吧?的算法——给他一个奇怪的名字 打擂法

  1. 把黑白点分开
  2. 从左边随意拿一个点,右边随便那一个点,放在擂台上连一条边,这条边的边权就是两个点的点权中较小的
  3. 然后把点权减掉,这时点权为0的点下擂台,找一个同样颜色的点上来在,做上面一样的事情
  4. 当在场所有的点都是0以后,可能还会有一些点没有连边,那就佛系地全部到一个点

因为如果两个点都被连过边,那么它们一定不会再被连起来,也就是不会产生环,可以保证这样生成的是一棵树
OK,完事


c++代码:

#include<bits/stdc++.h>
using namespace std;

struct Rec{
	int v,nod;
}a[100005],b[100005];
int n,anum=0,bnum=0,flag[100005];

int main(){
	scanf("%d",&n);
	for (int i=1;i<=n;i++){
		int k,value;
		scanf("%d%d",&k,&value);
		if (k==1){
			a[++anum].v=value;
			a[anum].nod=i;
		}
		else{
			b[++bnum].v=value;
			b[bnum].nod=i;
		}
	}
	int i=1,j=1;
	while(i<=anum && j<=bnum){
		cout<<a[i].nod<<' '<<b[j].nod<<' '<<min(a[i].v,b[j].v)<<endl;
		int k=min(a[i].v,b[j].v);
		a[i].v-=k;
		b[j].v-=k;
		flag[a[i].nod]=flag[b[j].nod]=1;
		if (a[i].v==0) i++;
		else j++;
	}
	for (;i<=anum;i++){
		if (!flag[a[i].nod])
		cout<<a[i].nod<<' '<<b[1].nod<<" 0"<<endl;
	}
	for (;j<=bnum;j++){
		if (!flag[b[j].nod])
		cout<<b[j].nod<<' '<<a[1].nod<<" 0"<<endl;
	}
	return 0;
}

于XJ机房607

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值