POJ1655 终于找到TLE的原因

本文介绍了一种通过深度优先搜索寻找树的重心的方法,并对比了使用vector<vector<int>>与vector<int>[nodemax]两种不同数据结构实现的效率差异。
摘要由CSDN通过智能技术生成
//poj1655 
#include<iostream>
#include<vector>
#include<cstring>
#include<limits.h>
// #include<Windows.h>
using namespace std;

const int nodemax=20001;

vector< vector<int> >edge;
int n;
int balmin; //最大的子连通树的大小
int all[nodemax];   //计算该节点的所有子节点的和(包括自己本身 
int weindex;

int dfs(int par,int order); //par父节点  order当前节点的序号

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        cin>>n;
        edge.clear();
        // vector<int> temp;
        for(int i=0;i<=n;i++)
            edge.push_back(vector<int>(0));
        // edge.swap(vector< vector<int> >temp(n+1));           
        memset(all,0,sizeof(all));
        balmin=INT_MAX;
        weindex=-1;

        int st,end;
        for(int i=1;i<n;i++)
        {
            cin>>st>>end;
            edge[st].push_back(end);
            edge[end].push_back(st);
        }

    //for check
        /*
        cout<<"*********************"<<endl;
        for(int i =1;i<=n;i++)
        {
            for(int j=0;j<edge[i].size();j++)
            {
                cout << edge[i][j]<< " ";
            }
            cout<<endl;
        }
        cout<<"*********************"<<endl;
        */
        dfs(-1,1);
        cout<<weindex<<' '<<balmin<<endl;
    }
    return 0;
}

int dfs(int par,int order)
{
    int &ans=all[order];
    int sonmax=0;       
    ans=1;
    for(int i=0;i<edge[order].size();i++)
    {
        int end=edge[order][i];
        if(end!=par)
        {
            ans += dfs(order, end);
            if(sonmax<all[end])
                sonmax=all[end];
        }
    }

    sonmax=max(sonmax,n-ans);
    if(sonmax<balmin)
    {
        balmin=sonmax;
        weindex=order;      //树的重心
    }

    //cout<<"当前节点: "<<order<<"\t"<<"最大子连同树: "<<sonmax<<endl;

    return ans;
}

这是TLE了的代码


//poj1655 
#include<iostream>
#include<vector>
#include<cstring>
#include<limits.h>
// #include<Windows.h>
using namespace std;

const int nodemax=20001;

vector<int>edge[nodemax];
int n;
int balmin; //最大的子连通树的大小
int all[nodemax];   //计算该节点的所有子节点的和(包括自己本身 
int weindex;

int dfs(int par,int order); //par父节点  order当前节点的序号

int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        cin>>n;
        memset(edge,0,sizeof(edge));
        // edge.clear();
        // vector<int> temp;
        // for(int i=0;i<=n;i++)
        //  edge.push_back(vector<int>(0));
        // edge.swap(vector< vector<int> >temp(n+1));           
        memset(all,0,sizeof(all));
        balmin=INT_MAX;
        weindex=-1;

        int st,end;
        for(int i=1;i<n;i++)
        {
            cin>>st>>end;
            edge[st].push_back(end);
            edge[end].push_back(st);
        }

    //for check
        /*
        cout<<"*********************"<<endl;
        for(int i =1;i<=n;i++)
        {
            for(int j=0;j<edge[i].size();j++)
            {
                cout << edge[i][j]<< " ";
            }
            cout<<endl;
        }
        cout<<"*********************"<<endl;
        */
        dfs(-1,1);
        cout<<weindex<<' '<<balmin<<endl;
    }
    return 0;
}

int dfs(int par,int order)
{
    int &ans=all[order];
    int sonmax=0;       
    ans=1;
    for(int i=0;i<edge[order].size();i++)
    {
        int end=edge[order][i];
        if(end!=par)
        {
            ans += dfs(order, end);
            if(sonmax<all[end])
                sonmax=all[end];
        }
    }

    sonmax=max(sonmax,n-ans);
    if(sonmax<balmin)
    {
        balmin=sonmax;
        weindex=order;      //树的重心
    }

    //cout<<"当前节点: "<<order<<"\t"<<"最大子连同树: "<<sonmax<<endl;

    return ans;
}

把vector< vector < int> >edge改成vector< int >edge[nodemax],并且对应的初始化方式换一下就可以。TLE估计是因为我在每次初始化前者的时候花了太长时间了吧,下次注意,其实用后者声明二维数组(第一维是动态的)也是很方便的啊~

就是938MS有点懵…自己算的明明是O(n)的算法…可能是STL的不管怎么初始化就是慢吧…下次还是老老实实邻接表吧…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值