[蓝桥杯][历届试题]连号区间数-题解(耗时较少)(C++代码)

[蓝桥杯][历届试题]连号区间数-题解(耗时较少)(C++代码)

题目描述

题目描述
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。

输入
第一行是一个正整数N (1 < = N < = 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 < = Pi < = N), 表示这N个数字的某一全排列。
输出
输出一个整数,表示不同连号区间的数目。
样例输入
5
3 4 2 5 1
样例输出
9

思路:

其实对于这道题目因为他的数是连续的,所以比较简单,我们可以利用这一点:

只要我们做到:最大值-最小值+1=i - j+1(即你要判断的区间长度)

注意事项

其实题目很简单,外层的双重遍历是肯定少不了的,问题就是你在遍历之后进行判断的方法:

错误示范:
(1)用sort排序,这样耗时太长,会超时.
(2)耗时较多的:用max( )和min( ),来查找。(虽然不会超时,但是可以优化)

本题优化

(1)最大值-最小值+1=i - j+1(即你要判断的区间长度)
(2)因为我们的外层的双重遍历肯定是少不了的,我们可以在这个遍历的过程中找到max和min
核心代码(1)
for(int i=0;i<n;i++){
        int min=arr[i];
        int max=arr[i];
        for(int j=i;j<n;j++){
            if(i == j) {
                ans++;
                continue; 
            }
            else{
                if(arr[j]>max) max=arr[j];
                if(arr[j]<min) min=arr[j];
                if(max-min+1==j-i+1) ans++;
            }
         
        }
    }
核心代码合并后
for(int i=0;i<n;i++){
        int min=arr[i];
        int max=arr[i];
        for(int j=i;j<n;j++){
             
            if(arr[j]>max) max=arr[j];
            if(arr[j]<min) min=arr[j];
            if(max-min+1==j-i+1) ans++;
                 
            }
         
        }
    }
完整代码
#include<iostream>
using namespace std;
 
int n;
int arr[50000];
int ans=0;
 
int main(){
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>arr[i];
    }
     
    for(int i=0;i<n;i++){
        int min=arr[i];
        int max=arr[i];
        for(int j=i;j<n;j++){
             
            if(arr[j]>max) max=arr[j];
            if(arr[j]<min) min=arr[j];
            if(max-min+1==j-i+1) ans++;
         
        }
    }
    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值