[蓝桥杯][2017年第八届真题]09分巧克力
标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。
切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
思路:暴力枚举
枚举每次切割的长度,从大到小。
(1)第一个 len = 100000 ,然后每次len - -
(2)len=abs(S/K) ,len --(70%分数)
(3)二分法枚举(100%)
(2)代码:
#include<iostream>
#include<cmath>
using namespace std;
int main(){
int N,K;
int a[100000][2];
cin>>N>>K;
for(int i=0;i<N;i++){
cin>>a[i][0]>>a[i][1];
}
int S=0;
for(int i=0;i<N;i++){
S+=(a[i][0]*a[i][1]);
}
int len = abs(S/K)+1;
for(;len>1;len--){//len在逐渐较小
int cut=0;
for(int i=0;i<N;i++){
cut+=(a[i][0]/len)*(a[i][1]/len);
}
if(cut>=K){
cout<<len<<endl;
return 0;
}
}
}
(3)代码
#include<iostream>
#include<cmath>
using namespace std;
int main(){
int N,K;
int a[100000][2];
cin>>N>>K;
for(int i=0;i<N;i++){
cin>>a[i][0]>>a[i][1];
}
int S=0;
for(int i=0;i<N;i++){
S+=(a[i][0]*a[i][1]);
}
int r = abs(S/K)+1;
int l=1;
int ans=0; //记录最优的mid(最大的)
while(l<=r){
int mid=(l+r)/2;
int cut=0;
// 每块巧克力按照mid来切割
for(int i=0;i<N;i++){
cut+=(a[i][0]/mid)*(a[i][1]/mid);
}
if(cut>=K){
l=mid+1;//mid可以,继续尝试最优解
ans=mid; //记录本次最优解
}else{
r=mid-1;
}
}
cout<<ans<<endl;
return 0;
}