3 月 10 日-3 月 11 日,爱数重磅发布决策智能平台,深度融合数据、业务和 AI 安全,以 Data+AI 提升组织效益;以 AI 安全的创新架构实现可信 AI ,让决策建议更可靠。
推理模型的无限边界,作为爱数决策智能平台发布会的第三场,围绕推理模型在决策智能平台中的能力边界展开深入探讨。面对复杂问题,爱数决策智能平台借助推理模型的强大逻辑推理和结构性思考能力,一个平台为企业全部业务场景提供可落地的决策建议,助力企业业务持续创新。
爱数决策智能平台
全方位实现企业智能化升级
世上至少有两种游戏。一种可称为有限游戏,另一种称为无限游戏。有限游戏以取胜为目的,而无限游戏以延续游戏为目的。
——詹姆斯·卡斯《有限与无限的游戏》
以《有限与无限的游戏》为引,爱数联合创始人兼产品副总裁李基亮提出,企业决策智能的本质是一场“无限游戏”。他指出,企业若想实现基业长青,需跳出短期竞争的“有限思维”,转向持续创新、开放协作与价值共担的“无限模式”。爱数决策智能平台,正是企业参与这场无限游戏的全新利器,深度融合业务、数据、AI 安全,打破业务壁垒,实现一个决策智能平台落地全部业务场景,释放 AI 的无限潜能,全方位提升企业智能化水平。
深度融合决策三要素
构建以决策为中心的一体化平台
在企业的无限游戏中,决策是企业实现持续创新中比较重要的一环,而决策有 3 个必不可少的要素:数据、逻辑、行动。数据,是指内外部多源异构数据,用来辅助企业快速、精准决策的信息;逻辑,评估决策的过程,包括直觉思考、即时反馈和谨慎思考、深度推理;行动,无缝对接业务系统,通过多业务链的协调工作,执行决策,完成复杂场景下的特定任务。
爱数决策智能平台深度融合决策三要素,构建会思考、懂业务、主动干的智能体,自动适应动态变化的业务环境,助力企业在不同业务场景下安全、可靠、有效地使用 AI,促进业务持续创新。
决策三要素
推理模型
“慢思考”让决策建议更可信
对于决策来说,“逻辑”是至关重要的一个要素。推理模型的出现恰巧强化了“逻辑”,这一评估决策的过程。与基座模型擅长联想与创造不同,推理模型经过深度训练与优化,不仅具备强大的自然语言处理能力,还能够深入理解和分析文本中的复杂关系,进行多步骤的推理、逻辑分析和决策能力。
爱数决策智能平台将基座模型和推理模型能力相结合,引入推理模型的“慢思考”机制,让决策建议又快又准,真正实现从数据到行动的闭环。
-
多维数据整合:统一汇聚、连接企业结构化数据、非结构化数据、机器数据等业务全链条数据,让决策建议有“数”可依。
-
统一的业务知识网络:统一业务语义表达,让推理模型持续吸收行业知识与专家经验,通过动态学习与自我反馈,持续优化决策建议,让决策建议更贴近业务实际。
-
决策过程更透明:推理模型直观展示逻辑推理和分析步骤,让决策建议不再是黑盒输出,而是更透明、可追溯。
基座模型与推理模型的特点
场景实践
产业情报实时分析决策,优化业务运营
爱数决策智能平台通过 Data+AI+行业知识的深度融合,在复杂场景中平衡“效率”与“可信”,在多领域展现出巨大潜力。以化工产业情报分析场景为例,决策智能平台整合化工产业多维数据,构建统一的行业知识网络,将企业内外部的数据直观呈现出来,实时掌握行业动态变化,为决策提供坚实的数据支撑。超级助手智能问答交互,快速查询工艺路径并展示合成流程;深度分析市场价格动态,并提供决策建议,帮助企业及时调整工厂排产计划,优化运营策略,提升工厂收益。
情报分析场景演示:
推理模型的边界并非固定,而是随业务场景的拓展持续延伸。爱数决策智能平台不仅是为企业提供决策建议的技术工具,而是以一个平台实现企业业务持续创新的战略载体,为企业客户打造不同业务场景下的超级助手,助力企业业务实现从数据洞察到决策执行的智能化升级,让人工智能真正成为企业创新发展的伙伴。