1.与门
与门作为计算机逻辑电路中最经常被提起的,我们将用深度学习思维通过以下代码实现与门的操作。
如果想要得到上图结果,其实就是典型的分类问题。我们要输入的解释变量有两个x1, x2的值,权重和阈值是前人经过反复训练得到的参数,输出的是概率,然后通过阶跃函数转换成0或者1。公式如下:
原生Python代码如下:
def AND(x1, x2):
w1, w2, theta = 0.5, 0.5, 0.7 # 前人经验
tmp = x1*w1 + x2*w2
if tmp <= theta:
return 0
else:
return 1
Numpy库代码如下:
def AND(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7 # 相当于-theta
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
输出结果验证:
2. 或门
与与门类似,得或门代码(以下均用numpy库书写)
def OR(x1, x2):
x = np.array([x1, x2])
w = np.array([0.5, 0.5]) # 只有权重和偏置与AND不同
b = -0.2
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
结果验证得:
3. 与非门
与非门代码如下:
def NAND(x1, x2):
x = np.array([x1, x2])
w = np.array([-0.5, -0.5]) # 只有权重和偏置与AND不同
b = 0.7
tmp = np.sum(w*x) + b
if tmp <= 0:
return 0
else:
return 1
输出结果验证:
4. 异或门
由于单层感知机地局限性,仅设置权重和偏置不可能实现异或门。不能实现原因说明: 因为我们上述都是线性分类:如下图
如果想要分类异或门(图形表示如下图),用当前分类方法无法实现,
要么就必须要使用非线性进行实现(如下图)。
于是我们想到用两个感知机叠加来进行异或门实现,从这里之后,神经网络逐渐开始了传奇之路。
我们要使用的多层感知机框架如下图:
按照图中由左上,左下,右顺序分别为与非门,或门,与门
于是我们按照上图改写了异或真值表(s1为与非结果,s2为或结果):
实现代码如下:
def XOR(x1, x2):
s1 = NAND(x1, x2)
s2 = OR(x1, x2)
y = AND(s1, s2)
return y
结果验证:
到此为止,我们实现了基本的逻辑电路,下一节开始神经网络。