深度学习入门-02通过与或非门实现简单的感知机代码

1.与门

与门作为计算机逻辑电路中最经常被提起的,我们将用深度学习思维通过以下代码实现与门的操作。
在这里插入图片描述
如果想要得到上图结果,其实就是典型的分类问题。我们要输入的解释变量有两个x1, x2的值,权重和阈值是前人经过反复训练得到的参数,输出的是概率,然后通过阶跃函数转换成0或者1。公式如下:
在这里插入图片描述

原生Python代码如下:

def AND(x1, x2):
	w1, w2, theta = 0.5, 0.5, 0.7 # 前人经验
	tmp = x1*w1 + x2*w2
	if tmp <= theta:
		return 0
	else:
		return 1

Numpy库代码如下:

def AND(x1, x2):
	x = np.array([x1, x2])
	w = np.array([0.5, 0.5])
	b = -0.7 # 相当于-theta
	tmp = np.sum(w*x) + b
	if tmp <= 0:
		return 0
	else:
		return 1

输出结果验证:
在这里插入图片描述

2. 或门

在这里插入图片描述
与与门类似,得或门代码(以下均用numpy库书写)

def OR(x1, x2):
	x = np.array([x1, x2])
	w = np.array([0.5, 0.5]) # 只有权重和偏置与AND不同
	b = -0.2 
	tmp = np.sum(w*x) + b
	if tmp <= 0:
		return 0
	else:
		return 1

结果验证得:
在这里插入图片描述

3. 与非门

在这里插入图片描述
与非门代码如下:

def NAND(x1, x2):
	x = np.array([x1, x2])
	w = np.array([-0.5, -0.5]) # 只有权重和偏置与AND不同
	b = 0.7
	tmp = np.sum(w*x) + b
	if tmp <= 0:
		return 0
	else:
		return 1

输出结果验证:
在这里插入图片描述

4. 异或门

由于单层感知机地局限性,仅设置权重和偏置不可能实现异或门。不能实现原因说明: 因为我们上述都是线性分类:如下图
在这里插入图片描述
如果想要分类异或门(图形表示如下图),用当前分类方法无法实现,
在这里插入图片描述
要么就必须要使用非线性进行实现(如下图)。
在这里插入图片描述

于是我们想到用两个感知机叠加来进行异或门实现,从这里之后,神经网络逐渐开始了传奇之路。
在这里插入图片描述
我们要使用的多层感知机框架如下图:
在这里插入图片描述
按照图中由左上,左下,右顺序分别为与非门,或门,与门

于是我们按照上图改写了异或真值表(s1为与非结果,s2为或结果):
在这里插入图片描述

实现代码如下:

def XOR(x1, x2):
	s1 = NAND(x1, x2)
	s2 = OR(x1, x2)
	y = AND(s1, s2)
	return y

结果验证:
在这里插入图片描述
到此为止,我们实现了基本的逻辑电路,下一节开始神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不止三岁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值