深度学习
文章平均质量分 68
我不止三岁
无
展开
-
01 入门Pytorch
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Pytorch安装二、基本操作1.引入库2.读入数据总结前言PyTorch是一个开源的Python机器学习库,基于Torch,底层由C++实现,应用于人工智能领域,如自然语言处理。它主要由Facebook的人工智能研究团队开发,并且被用于Uber的概率编程软件Pyro。它包括以下特征:(1)类似于NumPy的张量计算,可使用GPU加速;(2)基于带自动微分系统的深度神经网络与Tensorflow区别一言以蔽之.原创 2022-03-25 23:51:35 · 1115 阅读 · 0 评论 -
np.unique详解
numpy.unique(arr, return_index=False, return_inverse=False, return_counts=False, axis=None)文章目录1.return_index2.return_inverse3.return_counts4.axis1.return_indexreturn_index为True时:会构建一个递增的唯一值的新列表,并返回新列表u和 新列表中的元素在之前定义的旧列表arr中第一次出现值的索引indices2.return_in原创 2022-02-14 00:58:55 · 8046 阅读 · 1 评论 -
深度学习实战-01 实现一个电影评论二分类
文章目录一.导言二.电影评论二分类实战2.1 步骤2.2 导入库2.3 获取数据2.3.1 导入数据2.3.2 数据处理2.3.3 向量化数据2.3.4 处理监督数据(label data)2.4 建立模型2.5 模型训练2.6 模型评估2.6.1 训练损失和验证损失2.6.2 训练精度和验证精度2.6.3 模型评估结果2.7 改进模型2.8 总结一.导言在实战这块,我们已经具备了一些入门基本的原理和神经网络的整体过程的理解,在训练中为了节省时间,实战以keras进行演示,以便更快地获得模型运行性能并加原创 2021-12-12 15:33:36 · 965 阅读 · 0 评论 -
深度学习入门-03 实现一个简单的神经网络
文章目录1.神经网络2. 激活函数2.1sigmoid激活函数和阶跃函数对比2.2 激活函数为什么使用非线性的2.3 另一常用激活函数-ReLU函数2.4 leakyrelu函数2.5 softmax函数2.6 tanh函数2.7 激活函数选择2.7.1隐藏层2.7.2 输出层三. 神经网络实现(3层)3.1 符号介绍四.神经网络实现方法4.1 原生实现方法4.2 Tensorflow实现4.3 keras实现1.神经网络如下图,这是一个简单的神经网络框架,包含了一层输入层(两个神经元),一层中间层(隐原创 2021-12-07 00:56:40 · 1174 阅读 · 3 评论 -
深度学习入门 - np.dot,np.multiply,星号(*)之间的关系
文章目录一.相关概念1.1 一维数组1.2 行向量1.3 列向量1.4 矩阵二. 一维数组计算2.1 计算元素积(*)2.2 计算内积(np.dot)2.3 multiply进行计算三.行向量,列向量的计算3.1 计算元素积(*)3.2 计算内积(np.dot)3.3 multiply进行计算四. 矩阵的计算4.1 计算元素积(*)4.2 计算内积(np.dot)4.3 multiply进行计算五. 总结一.相关概念1.1 一维数组一维数组在python中是用 list 存储。用numpy创建一个一维原创 2021-12-02 21:30:06 · 862 阅读 · 0 评论 -
深度学习入门-02通过与或非门实现简单的感知机代码
文章目录1.与门2. 或门3. 与非门4. 异或门1.与门与门作为计算机逻辑电路中最经常被提起的,我们将用深度学习思维通过以下代码实现与门的操作。如果想要得到上图结果,其实就是典型的分类问题。我们要输入的解释变量有两个x1, x2的值,权重和阈值是前人经过反复训练得到的参数,输出的是概率,然后通过阶跃函数转换成0或者1。公式如下:原生Python代码如下:def AND(x1, x2): w1, w2, theta = 0.5, 0.5, 0.7 # 前人经验 tmp = x1*w1 +原创 2021-12-01 19:49:55 · 2639 阅读 · 0 评论 -
深度学习入门-01感知机和神经网络对比
文章目录一.概念1.1 感知机概念1.2 神经网络概念1.3 区别一.概念1.1 感知机概念感知机由美国学者Frank Rosenblatt在1957年提出,它通过接收多个输入信号,输出一个信号。比如,我们通过检查者的各项标准(血压、抽血后的各项参数、心跳心率等,多个信号)来评价这个检查者是否有疾病(有or没有,一个信号)。如图,是有两个输入的感知机。上图公式为1.2 神经网络概念神经网络官方定义见百度百科,神经网络其实就是多层感知机(把多个感知机组合在一起),即使用sigmoid或者tan原创 2021-12-01 18:54:22 · 1080 阅读 · 0 评论 -
深度学习-各类梯度下降优化算法回顾
本文是根据 链接 进行的翻译,回顾了深度学习的各种梯度下降优化算法。文章目录一.概述二.引言三.Gradient Descent Variants(梯度下降法变体)1.1 Batch Gradient Descent(批量梯度下降)1.2 Stochastic Gradient Descent(随机梯度下降)1.3 Mini-Batch Gradient Descent(小批量梯度下降)1.4 总结2. 挑战四. Gradient descent optimization algorithms(梯度下降优翻译 2021-12-01 18:31:22 · 822 阅读 · 0 评论 -
epoch,batch,iteration区别
原创 2021-11-22 19:51:37 · 264 阅读 · 0 评论