复活小记?

哇,我复活啦

高考炸了,低于100分的数学让我被迫苟近了中大
然后就被“邀请”去参加acm选拔赛了。
康复训练效果感觉不佳啊,tarjan都快忘了,更别提什么网络流min25多项式之类的了。
靠着切切水题混着看了。

复习了一下杜教筛,就拿这个来当个重启的契机吧。
原博客地址

补充几个小小的有用的性质:

1 、 μ ∗ I = ϵ 1、\mu * I=\epsilon 1μI=ϵ
2 、 φ ∗ I = i d 2、φ*I=id 2φI=id
3 、 μ ∗ i d = φ 3、\mu * id=φ 3μid=φ
4 、 ∑ d ∣ n μ ( d ) d = φ ( n ) n 4、\sum_{d|n}\frac{\mu(d)}{d}=\frac{φ(n)}{n} 4dndμ(d)=nφ(n)

证明:
1 、 μ ∗ I = ∑ d ∣ n μ ( d ) 1、\mu*I=\sum_{d|n}\mu(d) 1μI=dnμ(d)
那么如果n不为1,那么必然可以分为多个不同的质因数。
然后观察 μ \mu μ的计算公式:
在这里插入图片描述
那么 m = 1 、 2 、 3 、 4 … m=1、2、3、4… m=1234时,那么不就是组合数中的交替正负号然后求和吗。
于是乎就可以知道只有当 n = 1 n=1 n=1时原式等于1,其余都为0。

2 、 φ ∗ I = ∑ d ∣ n φ ( d ) 2、φ*I=\sum_{d|n}φ(d) 2φI=dnφ(d)
φ ( n ) φ(n) φ(n)的意义是1到n-1中与n互质的数的个数。
首先我们看当 n = p q ( p 为某质数) n=p^q(p为某质数) n=pqp为某质数)时会发生什么:
∑ d ∣ n φ ( d ) = φ ( 1 ) + φ ( p ) + φ ( p 2 ) + … + φ ( p q ) \sum_{d|n}φ(d)=φ(1)+φ(p)+φ(p^2)+…+φ(p^q) dnφ(d)=φ(1)+φ(p)+φ(p2)++φ(pq)
= 1 + ( p − 1 ) + ( p 2 − p ) + … … + ( p q − p q − 1 ) = p q =1+(p-1)+(p^2-p)+……+(p^q-p^{q-1})=p^q =1+(p1)+(p2p)+……+(pqpq1)=pq
然后如果 n = Π p i q i n=\Pi p_i^{q_i} n=Πpiqi
那么由于 φ ( n ) φ(n) φ(n)是积性函数,根据狄利克雷卷积性质,那么 φ ( n ) ∗ I φ(n)*I φ(n)I也是积性函数,那么我们就可以分成:
( φ ∗ I ) ( Π p i q i ) = Π ( φ ∗ I ) ( p i q i ) (φ*I)(\Pi p_i^{q_i})=\Pi(φ*I)(p_i^{q_i}) (φI)(Πpiqi)=Π(φI)(piqi)
那么就和上面的同理了。

3 、 μ ∗ i d = ∑ d ∣ n μ ( d ) ∗ n d 3、\mu * id=\sum_{d|n}\mu(d)*\frac{n}{d} 3μid=dnμ(d)dn
当n为质数时,那么 原式 = μ ( 1 ) ∗ n + μ ( n ) ∗ 1 = n − 1 = φ ( n ) 原式=\mu(1)*n+\mu(n)*1=n-1=φ(n) 原式=μ(1)n+μ(n)1=n1=φ(n)
如果n可以表达成: n = p q n=p^q n=pq,那么 原式 = μ ( 1 ) ∗ n + μ ( p ) ∗ p q − 1 + … + μ ( p q ) ∗ 1 原式=\mu(1)*n+\mu(p)*p^{q-1}+…+\mu(p^q)*1 原式=μ(1)n+μ(p)pq1++μ(pq)1
可以发现中间的项都为0。于是原式化简为: μ ( 1 ) ∗ n + μ ( p ) ∗ p q − 1 = n − p q − 1 = φ ( n ) \mu(1)*n+\mu(p)*p^{q-1}=n-p^{q-1}=φ(n) μ(1)n+μ(p)pq1=npq1=φ(n)
如果n可以表达成: n = Π p i q i n=\Pi p_i^{q_i} n=Πpiqi那么类似于第二条性质一样,拆开即可。

4 、 ∑ d ∣ n μ ( d ) d = φ ( n ) n 4、\sum_{d|n}\frac{\mu(d)}{d}=\frac{φ(n)}{n} 4dndμ(d)=nφ(n)
两边同时乘一个n试试?

关于单位元

由于之前并没有仔细研究单位元。
又看到 ϵ ( n ) = [ n = = 1 ] \epsilon(n)=[n==1] ϵ(n)=[n==1]被称为狄利克雷卷积的单位元。
小证一下?
( f ∗ ϵ ) ( n ) = ∑ d ∣ n f ( d ) ∗ ϵ ( n d ) = f ( n ) (f*\epsilon)(n)=\sum_{d|n}f(d)*\epsilon(\frac{n}{d})=f(n) (fϵ)(n)=dnf(d)ϵ(dn)=f(n)
挺显然的
有什么用呢?

关于逆元

既然我们知道了 f ( n ) f(n) f(n)的单位元是 ϵ ( n ) \epsilon(n) ϵ(n)
那么我们可以找到一个函数 g ( n ) g(n) g(n)使得:
( f ∗ g ) ( n ) = ϵ ( n ) (f*g)(n)=\epsilon(n) (fg)(n)=ϵ(n)
那么这个 g ( n ) g(n) g(n)便是 f ( n ) f(n) f(n)的逆元。
怎么找呢?
( f ∗ g ) ( 1 ) = ∑ d ∣ 1 f ( d ) ∗ g ( 1 d ) = f ( 1 ) ∗ g ( 1 ) = 1 (f*g)(1)=\sum_{d|1}f(d)*g(\frac 1 d)=f(1)*g(1)=1 (fg)(1)=d∣1f(d)g(d1)=f(1)g(1)=1
那么按理来讲,我们可以直接令 g ( 1 ) = 1 f ( 1 ) g(1)=\frac 1{f(1)} g(1)=f(1)1
其他呢?
( f ∗ g ) ( 2 ) = ∑ d ∣ 2 f ( d ) ∗ g ( 2 d ) = f ( 1 ) ∗ g ( 2 ) + f ( 2 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 2 ) + f ( 2 ) f ( 1 ) = 0 (f*g)(2)=\sum_{d|2}f(d)*g(\frac 2 d)=f(1)*g(2)+f(2)*g(1)=f(1)*g(2)+\frac{f(2)}{f(1)}=0 (fg)(2)=d∣2f(d)g(d2)=f(1)g(2)+f(2)g(1)=f(1)g(2)+f(1)f(2)=0
那么 g ( 2 ) = − f ( 2 ) ( f ( 1 ) ) 2 g(2)=-\frac{f(2)}{(f(1))^2} g(2)=(f(1))2f(2)
同理:
( f ∗ g ) ( 3 ) = ∑ d ∣ 3 f ( d ) ∗ g ( 3 d ) = f ( 1 ) ∗ g ( 3 ) + f ( 3 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 3 ) + f ( 3 ) f ( 1 ) = 0 (f*g)(3)=\sum_{d|3}f(d)*g(\frac 3 d)=f(1)*g(3)+f(3)*g(1)=f(1)*g(3)+\frac{f(3)}{f(1)}=0 (fg)(3)=d∣3f(d)g(d3)=f(1)g(3)+f(3)g(1)=f(1)g(3)+f(1)f(3)=0
g ( 3 ) = − f ( 3 ) ( f ( 1 ) ) 2 g(3)=-\frac{f(3)}{(f(1))^2} g(3)=(f(1))2f(3)

( f ∗ g ) ( 4 ) = ∑ d ∣ 4 f ( d ) ∗ g ( 4 d ) = f ( 1 ) ∗ g ( 4 ) + f ( 2 ) ∗ g ( 2 ) + f ( 4 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 4 ) − ( f ( 2 ) ) 2 ( f ( 1 ) ) 2 + f ( 4 ) f ( 1 ) = 0 (f*g)(4)=\sum_{d|4}f(d)*g(\frac 4 d)=f(1)*g(4)+f(2)*g(2)+f(4)*g(1)=f(1)*g(4)-\frac{(f(2))^2}{(f(1))^2}+\frac{f(4)}{f(1)}=0 (fg)(4)=d∣4f(d)g(d4)=f(1)g(4)+f(2)g(2)+f(4)g(1)=f(1)g(4)(f(1))2(f(2))2+f(1)f(4)=0
g ( 4 ) = − f ( 4 ) ( f ( 1 ) ) 2 + ( f ( 2 ) ) 2 ( f ( 1 ) ) 3 g(4)=-\frac{f(4)}{(f(1))^2}+\frac{(f(2))^2}{(f(1))^3} g(4)=(f(1))2f(4)+(f(1))3(f(2))2

归根结底来看,我们可以总结为这条式子:
g ( n ) = { 1 f ( 1 ) n = 1 − 1 f ( 1 ) ∗ ∑ d ∣ n   d ! = 1 f ( d ) ∗ g ( n d ) n > 1 g(n)=\begin{cases} \frac 1{f(1)} & n=1 \\ -\frac 1 {f(1)} *\sum_{d|n\ d!=1}f(d)*g(\frac n d) & n>1 \\ \end{cases} g(n)={f(1)1f(1)1dn d!=1f(d)g(dn)n=1n>1
其中还能发现:只有 f ( 1 ) f(1) f(1)不为0时有其逆元。

有什么用?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值