复活小记?

哇,我复活啦

高考炸了,低于100分的数学让我被迫苟近了中大
然后就被“邀请”去参加acm选拔赛了。
康复训练效果感觉不佳啊,tarjan都快忘了,更别提什么网络流min25多项式之类的了。
靠着切切水题混着看了。

复习了一下杜教筛,就拿这个来当个重启的契机吧。
原博客地址

补充几个小小的有用的性质:

1 、 μ ∗ I = ϵ 1、\mu * I=\epsilon 1μI=ϵ
2 、 φ ∗ I = i d 2、φ*I=id 2φI=id
3 、 μ ∗ i d = φ 3、\mu * id=φ 3μid=φ
4 、 ∑ d ∣ n μ ( d ) d = φ ( n ) n 4、\sum_{d|n}\frac{\mu(d)}{d}=\frac{φ(n)}{n} 4dndμ(d)=nφ(n)

证明:
1 、 μ ∗ I = ∑ d ∣ n μ ( d ) 1、\mu*I=\sum_{d|n}\mu(d) 1μI=dnμ(d)
那么如果n不为1,那么必然可以分为多个不同的质因数。
然后观察 μ \mu μ的计算公式:
在这里插入图片描述
那么 m = 1 、 2 、 3 、 4 … m=1、2、3、4… m=1234时,那么不就是组合数中的交替正负号然后求和吗。
于是乎就可以知道只有当 n = 1 n=1 n=1时原式等于1,其余都为0。

2 、 φ ∗ I = ∑ d ∣ n φ ( d ) 2、φ*I=\sum_{d|n}φ(d) 2φI=dnφ(d)
φ ( n ) φ(n) φ(n)的意义是1到n-1中与n互质的数的个数。
首先我们看当 n = p q ( p 为某质数) n=p^q(p为某质数) n=pqp为某质数)时会发生什么:
∑ d ∣ n φ ( d ) = φ ( 1 ) + φ ( p ) + φ ( p 2 ) + … + φ ( p q ) \sum_{d|n}φ(d)=φ(1)+φ(p)+φ(p^2)+…+φ(p^q) dnφ(d)=φ(1)+φ(p)+φ(p2)++φ(pq)
= 1 + ( p − 1 ) + ( p 2 − p ) + … … + ( p q − p q − 1 ) = p q =1+(p-1)+(p^2-p)+……+(p^q-p^{q-1})=p^q =1+(p1)+(p2p)+……+(pqpq1)=pq
然后如果 n = Π p i q i n=\Pi p_i^{q_i} n=Πpiqi
那么由于 φ ( n ) φ(n) φ(n)是积性函数,根据狄利克雷卷积性质,那么 φ ( n ) ∗ I φ(n)*I φ(n)I也是积性函数,那么我们就可以分成:
( φ ∗ I ) ( Π p i q i ) = Π ( φ ∗ I ) ( p i q i ) (φ*I)(\Pi p_i^{q_i})=\Pi(φ*I)(p_i^{q_i}) (φI)(Πpiqi)=Π(φI)(piqi)
那么就和上面的同理了。

3 、 μ ∗ i d = ∑ d ∣ n μ ( d ) ∗ n d 3、\mu * id=\sum_{d|n}\mu(d)*\frac{n}{d} 3μid=dnμ(d)dn
当n为质数时,那么 原式 = μ ( 1 ) ∗ n + μ ( n ) ∗ 1 = n − 1 = φ ( n ) 原式=\mu(1)*n+\mu(n)*1=n-1=φ(n) 原式=μ(1)n+μ(n)1=n1=φ(n)
如果n可以表达成: n = p q n=p^q n=pq,那么 原式 = μ ( 1 ) ∗ n + μ ( p ) ∗ p q − 1 + … + μ ( p q ) ∗ 1 原式=\mu(1)*n+\mu(p)*p^{q-1}+…+\mu(p^q)*1 原式=μ(1)n+μ(p)pq1++μ(pq)1
可以发现中间的项都为0。于是原式化简为: μ ( 1 ) ∗ n + μ ( p ) ∗ p q − 1 = n − p q − 1 = φ ( n ) \mu(1)*n+\mu(p)*p^{q-1}=n-p^{q-1}=φ(n) μ(1)n+μ(p)pq1=npq1=φ(n)
如果n可以表达成: n = Π p i q i n=\Pi p_i^{q_i} n=Πpiqi那么类似于第二条性质一样,拆开即可。

4 、 ∑ d ∣ n μ ( d ) d = φ ( n ) n 4、\sum_{d|n}\frac{\mu(d)}{d}=\frac{φ(n)}{n} 4dndμ(d)=nφ(n)
两边同时乘一个n试试?

关于单位元

由于之前并没有仔细研究单位元。
又看到 ϵ ( n ) = [ n = = 1 ] \epsilon(n)=[n==1] ϵ(n)=[n==1]被称为狄利克雷卷积的单位元。
小证一下?
( f ∗ ϵ ) ( n ) = ∑ d ∣ n f ( d ) ∗ ϵ ( n d ) = f ( n ) (f*\epsilon)(n)=\sum_{d|n}f(d)*\epsilon(\frac{n}{d})=f(n) (fϵ)(n)=dnf(d)ϵ(dn)=f(n)
挺显然的
有什么用呢?

关于逆元

既然我们知道了 f ( n ) f(n) f(n)的单位元是 ϵ ( n ) \epsilon(n) ϵ(n)
那么我们可以找到一个函数 g ( n ) g(n) g(n)使得:
( f ∗ g ) ( n ) = ϵ ( n ) (f*g)(n)=\epsilon(n) (fg)(n)=ϵ(n)
那么这个 g ( n ) g(n) g(n)便是 f ( n ) f(n) f(n)的逆元。
怎么找呢?
( f ∗ g ) ( 1 ) = ∑ d ∣ 1 f ( d ) ∗ g ( 1 d ) = f ( 1 ) ∗ g ( 1 ) = 1 (f*g)(1)=\sum_{d|1}f(d)*g(\frac 1 d)=f(1)*g(1)=1 (fg)(1)=d∣1f(d)g(d1)=f(1)g(1)=1
那么按理来讲,我们可以直接令 g ( 1 ) = 1 f ( 1 ) g(1)=\frac 1{f(1)} g(1)=f(1)1
其他呢?
( f ∗ g ) ( 2 ) = ∑ d ∣ 2 f ( d ) ∗ g ( 2 d ) = f ( 1 ) ∗ g ( 2 ) + f ( 2 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 2 ) + f ( 2 ) f ( 1 ) = 0 (f*g)(2)=\sum_{d|2}f(d)*g(\frac 2 d)=f(1)*g(2)+f(2)*g(1)=f(1)*g(2)+\frac{f(2)}{f(1)}=0 (fg)(2)=d∣2f(d)g(d2)=f(1)g(2)+f(2)g(1)=f(1)g(2)+f(1)f(2)=0
那么 g ( 2 ) = − f ( 2 ) ( f ( 1 ) ) 2 g(2)=-\frac{f(2)}{(f(1))^2} g(2)=(f(1))2f(2)
同理:
( f ∗ g ) ( 3 ) = ∑ d ∣ 3 f ( d ) ∗ g ( 3 d ) = f ( 1 ) ∗ g ( 3 ) + f ( 3 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 3 ) + f ( 3 ) f ( 1 ) = 0 (f*g)(3)=\sum_{d|3}f(d)*g(\frac 3 d)=f(1)*g(3)+f(3)*g(1)=f(1)*g(3)+\frac{f(3)}{f(1)}=0 (fg)(3)=d∣3f(d)g(d3)=f(1)g(3)+f(3)g(1)=f(1)g(3)+f(1)f(3)=0
g ( 3 ) = − f ( 3 ) ( f ( 1 ) ) 2 g(3)=-\frac{f(3)}{(f(1))^2} g(3)=(f(1))2f(3)

( f ∗ g ) ( 4 ) = ∑ d ∣ 4 f ( d ) ∗ g ( 4 d ) = f ( 1 ) ∗ g ( 4 ) + f ( 2 ) ∗ g ( 2 ) + f ( 4 ) ∗ g ( 1 ) = f ( 1 ) ∗ g ( 4 ) − ( f ( 2 ) ) 2 ( f ( 1 ) ) 2 + f ( 4 ) f ( 1 ) = 0 (f*g)(4)=\sum_{d|4}f(d)*g(\frac 4 d)=f(1)*g(4)+f(2)*g(2)+f(4)*g(1)=f(1)*g(4)-\frac{(f(2))^2}{(f(1))^2}+\frac{f(4)}{f(1)}=0 (fg)(4)=d∣4f(d)g(d4)=f(1)g(4)+f(2)g(2)+f(4)g(1)=f(1)g(4)(f(1))2(f(2))2+f(1)f(4)=0
g ( 4 ) = − f ( 4 ) ( f ( 1 ) ) 2 + ( f ( 2 ) ) 2 ( f ( 1 ) ) 3 g(4)=-\frac{f(4)}{(f(1))^2}+\frac{(f(2))^2}{(f(1))^3} g(4)=(f(1))2f(4)+(f(1))3(f(2))2

归根结底来看,我们可以总结为这条式子:
g ( n ) = { 1 f ( 1 ) n = 1 − 1 f ( 1 ) ∗ ∑ d ∣ n   d ! = 1 f ( d ) ∗ g ( n d ) n > 1 g(n)=\begin{cases} \frac 1{f(1)} & n=1 \\ -\frac 1 {f(1)} *\sum_{d|n\ d!=1}f(d)*g(\frac n d) & n>1 \\ \end{cases} g(n)={f(1)1f(1)1dn d!=1f(d)g(dn)n=1n>1
其中还能发现:只有 f ( 1 ) f(1) f(1)不为0时有其逆元。

有什么用?

超声谐波成像中幅度调制聚焦超声引起的全场位移和应变的分析模型(Matlab代码实现)内容概要:本文主要介绍了一个关于超声谐波成像中幅度调制聚焦超声所引起全场位移和应变的分析模型,并提供了基于Matlab的代码实现。该模型旨在精确模拟和分析在超声谐波成像过程中,由于幅度调制聚焦超声作用于生物组织而产生的全场机械位移与应变分布,对于提高成像精度、理解组织力学特性以及辅助医学诊断具有重要意义。文中还列举了大量相关的科研仿真案例,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,展示了Matlab在科学研究与工程仿真中的广泛应用。 适合人群:具备一定Matlab编程基础,从事生物医学工程、超声成像、力学仿真或相关领域研究的研究生、科研人员及工程技术人员。 使用场景及目标:①用于超声弹性成像中的力学建模与仿真分析;②辅助理解聚焦超声在组织中引发的位移与应变机制;③为医学图像处理、疾病诊断(如肿瘤检测)提供量化力学依据;④作为科研教学与项目开发的技术参考。 阅读建议:建议读者结合Matlab代码深入理解模型实现细节,关注位移与应变的数值计算方法及可视化过程。同时可参考文档中提供的其他仿真案例,拓展跨学科研究思路,提升综合科研能力。
基于动态规划的微电网动态经济调度研究(Matlab代码实现)内容概要:本文围绕“基于动态规划的微电网动态经济调度研究”展开,结合Matlab代码实现,探讨了微电网在多约束条件下的优化调度问题。研究利用动态规划方法对微电网内部的分布式电源、储能系统及负荷进行协调优化,旨在降低运行成本、提高能源利用效率,并兼顾系统可靠性与环保性。文中详细介绍了模型构建过程、目标函数设计、约束条件设定及算法实现流程,并通过Matlab仿真验证了该方法的有效性与实用性。此外,文档还列举了大量相关研究主题与代码资源,涵盖电力系统优化、智能算法应用、新能源调度等多个方向,为后续研究提供了丰富参考。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源优化调度相关工作的工程技术人员。; 使用场景及目标:①掌握动态规划在微电网经济调度中的建模与求解方法;②学习Matlab在电力系统优化中的实际编程实现技巧;③为开展微电网、综合能源系统等领域的科研项目提供算法支持与案例参考。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,深入理解动态规划算法的实现细节,并可进一步扩展至多目标优化、不确定性建模等更复杂场景,提升科研创新能力。
基于多动作深度强化学习的柔性车间调度研究(Python代码实现)内容概要:本文介绍了基于多动作深度强化学习的柔性车间调度研究,重点在于通过Python代码实现深度强化学习算法在复杂制造环境中的调度优化。该方法结合柔性车间调度的特点,利用多动作策略提升模型决策能力,有效应对工序顺序灵活、设备选择多样等挑战,从而优化生产效率、缩短完工时间并提高资源利用率。研究涵盖了问题建模、状态与动作空间设计、奖励机制构建以及算法训练与验证全过程,展示了深度强化学习在智能制造领域的重要应用潜力。; 适合人群:具备一定Python编程基础和机器学习背景的研究生、科研人员及工业自动化领域的工程师;尤其适合从事智能调度、生产优化或强化学习应用研究的专业人士。; 使用场景及目标:①应用于柔性制造系统中的任务调度优化,提升车间运作效率;②作为深度强化学习在实际工业场景中落地的参考案例,推动AI技术与制造业深度融合;③为相关课题的研究提供可复现的代码实现与实验框架。; 阅读建议:建议读者结合文中提供的Python代码进行实践操作,深入理解强化学习模型在调度问题中的建模思路与实现细节,同时可尝试在不同规模的调度实例上进行测试与改进,以增强对算法性能与调参策略的掌握。
在剑网3游戏中,Lua脚本是玩家自定义交互行为的重要工具。针对玩家死亡事件(Player Death),开发者可以通过编写Lua脚本来监听此事件,并根据游戏逻辑实现自动复活。具体步骤如下: 参考资源链接:[剑网3 Lua事件大全:游戏交互关键事件解析](https://wenku.csdn.net/doc/2ft9e3fmqt?spm=1055.2569.3001.10343) 1. 首先,确保你对Lua语言有一定的了解,并熟悉剑网3提供的Lua事件接口。 2. 在Lua脚本中,你需要使用事件监听函数来捕捉Player Death事件。事件监听函数通常以游戏框架提供的接口形式存在,比如使用一个特定的函数来注册事件监听器。 3. 当Player Death事件被触发时,你的脚本会收到相应的通知。此时,你可以在事件回调函数中编写逻辑,比如判断玩家是否处于安全复活区域。 4. 如果玩家处于可复活区域,你的脚本可以通过调用游戏提供的API函数来实现自动复活。这可能涉及到修改游戏状态或者调用某个函数来改变玩家角色的状态。 5. 在实施自动复活逻辑时,还需要考虑到复活过程中的细节处理,例如等待一定时间或者确保玩家血量恢复到安全数值后才执行复活操作。 6. 最后,测试你的脚本确保它在各种场景下都能正常工作,包括网络延迟、游戏更新等情况。 为了更深入理解和掌握如何使用Lua脚本处理剑网3中的各种事件,包括Player Death事件,强烈推荐参考《剑网3 Lua事件大全:游戏交互关键事件解析》。这份资源详细解析了游戏中各类事件及其处理方式,是学习和掌握剑网3 Lua脚本编程不可或缺的参考资料。通过阅读和实践这些内容,你将能够更有效地使用Lua脚本来丰富你的游戏体验。 参考资源链接:[剑网3 Lua事件大全:游戏交互关键事件解析](https://wenku.csdn.net/doc/2ft9e3fmqt?spm=1055.2569.3001.10343)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值